Д.В. Денисов

ТЕОРИЯ РИСКА

Содержание

1.	Фун	кции полезности. Страховые премии	4			
2.	Moz	Модели индивидуального риска				
		Модель одиночного ущерба	15			
		Характеристики суммарного ущерба				
3.	Moz	цели коллективного риска	23			
	3.1.	Распределение суммарного иска	24			
	3.2.	Распределение числа исков	26			
	3.3.	Примеры распределения индивидуальных исков	28			
		Свойства обобщенного распределения Пуассона				
	3.5.	Точные методы вычисления параметров распределения обобщенного				
		закона Пуассона в дискретном случае	31			
	3.6.	Аппроксимация нормальным распределением величины суммарного				
		иска	35			
4.	Эле	менты теории разорения	42			
	4.1.	Изменение капитала как случайный процесс	42			
	4.2.	Оценка вероятности разорения для случая непрерывного времени	44			
		Оценка вероятности разорения для случая дискретного времени				
	4.4.	Величина капитала на момент разорения. Характеристики макси-				
		мального суммарного ущерба	51			
5 .	При	иложения теории риска.	61			
	5.1.	Распределения индивидуального иска	61			
	5.2.		63			
	5.3.	Останавливающее потери перестрахование	66			
		Перестрахование и вероятность разорения				

Введение

Актуарная математика непосредственно связана с деятельностью, которая носит название страхования. Само страхование как система создания специальных фондов для компенсации ущерба от случайных потерь возникло достаточно давно. Например, в древние времена правитель любого государства создавал запасы зерна на случай неурожая в будущем. Наиболее четко данная система обозначилась в эпоху географических открытий и развития морской торговли. Суть дела в том, что в этот период времени отправка морского корабля с товаром в дальнее плавание была всегда сопряжена с возможными потерями вследствие крушения корабля, гибелью экипажа, утратой товара из-за множества причин, начиная от морского пиратства и кончая порчей от морской воды. В такой ситуации люди, которые вкладывали деньги в снаряжение морской экспедиции, рисковали крупными суммами и ущербы возникали достаточно часто. Стремление смягчить последствия возникающих случайных событий и связанных с ними материальных потерь на практике достаточно быстро привело к двум способам действий. В первом случае предприниматели, вкладывающие средства в рискованное дело, объединяются, создавая совместное предприятие и таким образом разделяя случившийся ущерб по участникам. Во втором случае предприниматель платит определенную плату лицу или организации за покрытие будущего случайного ущерба. Здесь уже возникают понятия страхователя, который подвержен случайным ущербам и платит за компенсацию этих ущербов в случае их наступления, и страховщика, который возмещает случайные ущербы, заранее получая за эту услугу деньги. На самом деле эти способы действий связаны между собой. В современной практике любое предприятие, акционерное общество в законодательном порядке обязаны быть застрахованы от разных рисков, в том числе и по основному виду деятельности. С другой стороны, страховая компания как акционерное общество фактически разделяет ответственность между акционерами. Следует подчеркнуть, что целью страхования является финансовая компенсация последствий случайных событий, повлекших за собой материальный ущерб. В то же время, например, азартные игры не являются предметом рассмотрения страхования, поскольку их участники сознательно идут на риск и ситуация может сложиться в их пользу, то есть игроки могут не только понести потери, но и выиграть. Аналогичная ситуация с торговлей ценными бумагами: участник торгов может потерпеть неудачу, но его риски не страхуются, в противном случае страховые компании расплачивались бы за любое неудачное помещение капитала. Таким образом, здесь мы видим два вида рисков, первые принято называть чистыми, как например, кораблекрушение, пожар, и т. п., а вторые - спекулятивными. Предметом интереса страховщиков являются только чистые риски.

До сих пор речь шла о страховании имущества, когда размер ущерба четко определялся в денежном выражении. В личном страховании, например, в страховании жизни, дело обстоит иначе. В таких случаях страховые компании компенсируют не долю ущерба, а выплачивают заранее оговоренную сумму. При этом деликатная проблема оценки человеческой жизни решается самим страхователем. С другой стороны, личное страхование часто напрямую связывается с покупкой в рассрочку

дома. При этом размер страхового возмещения зависит от стоимости приобретаемого жилища.

Следует отметить, что страховая деятельность сама по себе перераспределяет денежные средства и аккумулирует их, с одной стороны, для непосредственно страховой деятельности, а с другой, инвестирование этих средств в различные отрасли способствует развитию таковых. Развитие промышленности и сельского хозяйства немыслима без развития страховых институтов. В современной ситуации инвестирование возможно лишь в те объекты, где все риски, обусловленные природой этих объектов, застрахованы. История развития промышленности показывает, что настоящее развитие любого государства начинается после становления страховой системы. Кроме того, качество жизни в государстве легко оценить по степени охвата страхованием его граждан.

Взаимодействие страховых компаний и их клиентов осуществляется путем продажи полисов - договоров, в которых указаны условия страхования. При заключении страхового договора сразу возникает вопрос о цене полиса. Эта цена должна быть приемлемой для клиента и страховой компании одновременно и должна учитывать такие факторы, как вероятность наступления страхового случая, величину возникающего при этом ущерба и т. д. Таким образом, при продаже полиса страховая компания должна сделать расчеты по финансовым обязательствам клиента, имея в виду, что она сама выполнит свои обязательства перед ним в будущем, причем в некотороый случайный момент. Эти расчеты делают специалисты-актуарии. В страховой деятельности невозможно обойтись без актуарных расчетов и выводов. В страховании имущества и других видах краткосрочного страхования необходимо достаточно точно описать характер тех рисков, которые страховая компания на себя берет. На основе информации о рисках необходимо определить величину взимаемой с клиента страховой премии. При этом требуется, с одной стороны, привлекать большое количество договоров, а с другой стороны, необходимо, чтобы по каждому заключенному договору можно было расплатиться. Это означает, что ответственность за обеспечение финансовой устойчивости страховой компании в значительной степени лежит на актуариях. В долгосрочных видах страхования, прежде всего в страховании жизни, появляется дополнительная задача изучать поведение нормы доходности и делать адекватные прогнозы по ее поведению в будущем. Кроме того, специфика страхования жизни диктует необходимость иметь достаточно средств, вложенных в быстроликвидные активы для своевременной выплаты по страховым случаям. Кроме того, для страхования жизни и пенсионного страхования правильная инвестиционная практика обеспечивает и возможность иметь дополнительные доходы страхователям и пенсионерам, играя тем самым и социальную роль. Следовательно, инвестиционная деятельность непосредственно связана с работой актуариев, которые обязаны делать оценки, прогнозы по поведению ценных бумаг на рынке.

1. Функции полезности. Страховые премии

Рассмотрим элементы теории полезности, где наглядно прослеживается, почему люди, организации прибегают к страхованию. Предположим, что имеется какойлибо экономический проект со случайным исходом. Тогда о качестве проекта можно судить по среднему значению экономического результата, таким образом можно сравнивать проекты между собой. На деле такой принцип, называемый принципом ожидаемого среднего, не применим. Для подтверждения этого утверждения всегда приводится такой пример. Пусть в проекте A ожидается чистая прибыль, равная 50000, с вероятностью 1, а в проекте B аналогичный выигрыш равен 200000, но с вероятностью 0.5, и с той же вероятностью ожидается убыток величины 50000. У проекта A средняя прибыль равна 50000, а у проекта B она составляет 75000. С точки зрения сравнения средней прибыли второй проект более предпочтителен, но большинство людей предпочитает проект A. Такие примеры показывают, что для описания процесса принятия решений нужны модели, учитывающие человеческую психологию. Для построения таких моделей введем понятие функции полезности, которое достаточно хорошо показывает, почему возникает потребность в страховании и с помощью которой можно узнать, какую сумму человек готов заплатить за

Человек, принимающий решения, будет обозначаться далее ЛПР, относительно которого будем считать, что он принимает решения, исходя из принципа ожидаемого среднего функции полезности, которая присуща только ему. Рассмотрим, как может быть определена эта функция и каковы ее свойства. Прежде всего положим, что величина u(w) функции полезности есть величина безразмерная, аргументом этой функции является величина, выражаеющаяся в денежных единицах. Следовательно, u(w) должна быть возрастающей функцией. Пусть w- сумма, подверженная риску, а значения функции полезности u(0) = 0, u(w) = 1. Считая значение w=1000, будем определять значения функции полезности u(t) на интервале (0,w). Для этого, сначала соединив точки (0,0) и (w,1), прямолинейным отрезком, будем последовательно уточнять вид графика этой функции. Предположим, что риск описывается случайной величиной ущерба X, которая принимает значения 0 и wс вероятностью 0.5. Это означает, что с вероятностью 0.5 сумма w не изменится и с такой же вероятностью ЛПР останется ни с чем. Среднее значение ущерба здесь равно 0.5w = 500. Если в такой ситуации существует страховая компания, которая может компенсировать весь ущерб, то возникает вопрос: какую максимальную премию согласно заплатить ЛПР на таких условиях? Обозначив эту максимальную премию через G, исходя из принципа ожидаемого среднего функции полезности будем иметь равенство

$$u(w - G) = 0.5u(0) + 0.5u(w),$$

из которого находится G. Соединив три точки (0,0), (w-G,0.5), (w,1) ломаной, получим уточнение графика функции. Далее, изменяя значение вероятности ущерба, аналогично для всех точек интервала (0,w) определяются значения функции $u(t), t \in (0,w)$. Если $\mu = E[X]$, а $G > \mu$,то говорят, что построенная функция полезности принадлежит нерасположенному к риску ЛПР. Процесс построения графика

функции полезности наводит на мысль, что функция u(w) должна быть не только возрастающей, но и вогнутой. Напомним, что для вогнутых функций справедливо неравенство Йенсена:

$$E[u(X)] \le u(E[X]).$$

В нашем случае если G— максимальная премия, которую готово заплатить ЛПР за полное возмещение ущерба, то она определяется из условия

$$u(w - G) = E[u(w - X)] \tag{1.1}$$

Из неравенства Йенсена следует, что $u(w-G) \leq u(w-E[X]) = u(w-\mu)$, откуда вытекает, что $G \geq \mu$. Таким образом, если у ЛПР функция полезности строго вогнута, то ЛПР является нерасположенным к риску, готовым заплатить страховой копании величину большую, чем среднее значение компенсированного ущерба. Именно здесь источник возникновения страховой деятельности.

Если страховщик компенсирует не весь ущерб, а лишь k—ю часть его, то уравнение для определения максимальной при таком условии премии будет выглядеть аналогично (1.1):

$$E[u(w - (1 - k)X - G)] = E[u(w - X)].$$
(1.2)

В том же случае, когда страховая компания компенсирует не долю ущерба, а выплачивает фиксированную сумму A в случае возникновения этого ущерба, аналогом уравнения (1.1) будет

$$E[u(w - X - G + A)] = pE[u(w - X)] + (1 - p)u(w),$$

где *p*- вероятность возникновения ущерба.

Рассмотрим теперь проблему заключения страхового договора с точки зрения интересов не страхователя, а страховщика. Пусть $u_I(.)$ - функция полезности страховщика. Если по условию компенсируется весь ущерб, то минимальная премия H, которую готов принять страховщик, определяется из равенства

$$u_I(w_I) = Eu_I(w_I + H - X),$$
 (1.3)

если страховщик примет меньшую сумму, то среднее значение его функции полезности окажется меньше полезности величины его капитала w_I . Из неравенства Йенсена следует, что

$$u_I(w_I) < u_I(w_I + H - \mu),$$

откуда следует, что $H > \mu$. Если выполнено условие $G \ge H \ge \mu$, то возможна сделка по продаже полиса. Рассмотрим некоторые примеры функций полезности.

Экспоненциальная функция полезности имеет вид

$$u(w) = -\exp(-\alpha w), \alpha > 0.$$

Это возрастающая вогнутая функция, поскольку

$$u'(w) = \alpha \exp(-\alpha w) > 0, u''(w) = -\alpha^2 \exp(-\alpha w) < 0.$$

Эта функция полезности имеет ту особенность, что величина G, определяемая из условия (1.1), не зависит от величины w:

$$-\exp(-\alpha(w-G)) = -E[\exp(-\alpha(w-X))] \iff \exp(\alpha G) = E[\exp(\alpha X)] \iff G = \frac{\ln M_X(\alpha)}{\alpha},$$

здесь $M_X(\alpha) = E[\exp(\alpha X)]$ - производящая функция моментов случайной величины X.

Рассмотрим

Пример 1.1. пусть функция полезности ЛПР имеет вид $u(w) = -\exp(-5w)$, и в распоряжении ЛПР имеются два экономических плана, которые мы будем рассматривать как случайные величины X и Y. Первый план имеет нормальное распределение со средним 5 и дисперсией 2, а второй так же распределен со средним 6 и дисперсией 2.5. Требуется выяснить, какой из этих планов предпочтительнее с точки зрения принципа ожидаемой полезности.

Решение. Для ответа на этот вопрос заметим, что если случайная величина Z распределена как $N(\mu, \sigma^2)$, то производящая функция моментов есть

$$M_X(\alpha) = \frac{1}{\sqrt{2\pi}\sigma} \int_R \exp(\alpha x) \cdot \exp(-\frac{(x-\mu)^2}{2\sigma^2}) dx =$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_R \exp(\frac{-x^2 - \mu^2 + 2\mu x + 2\alpha x\sigma^2}{2\sigma^2}) dx =$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_R \exp(\frac{-x^2 + 2x(\mu + \alpha\sigma^2) - (\mu + \alpha\sigma^2)^2}{2\sigma^2}) dx \cdot \exp(\frac{-\mu^2 + (\mu + \alpha\sigma^2)^2}{2\sigma^2}) =$$

$$= \exp(\frac{\alpha^2 \sigma^4 + 2\alpha \mu \sigma^2}{2\sigma^2}) = \exp(\alpha \mu + 0.5\alpha^2 \sigma^2).$$

Отсюда следует, что

$$E[u(X)] = E[-\exp(-5X)] = -M_X(-5) = -1,$$

$$E[u(Y)] = -M_Y(-6) = -\exp(1.25) < -1,$$

откуда следует, что план X более предпочтителен.

Замечание. Если бы случайная величина Y имела бы дисперсию, равную 2.4, то эти планы имели бы одинаковые значения ожидаемой полезности.

Следующий вид функции полезности-дробно-степенная функция-задается формулой

$$u(w) = w^{\gamma}, w > 0, \quad \gamma \in (0, 1).$$

Данная функция соответствует функции полезности не склонного к риску ЛПР, поскольку

$$u' = \gamma w^{\gamma - 1} > 0, \quad u'' = \gamma (\gamma - 1) w^{\gamma - 2} < 0.$$

В отличие от предыдущего примера премия G, находимая из условия (1.1), зависит от суммы, подверженной риску.

Пример 1.2. Функция полезности ЛПР имеет вид $u(w) = \sqrt{w}$. Состояние величины w = 10 подвержено риску, имеющему равномерное на интервале (0, w) распределение. Требуется найти максимальную премию, которую ЛПР готово заплатить за полное возмещение ущерба.

Решение. Для нахождения искомой премии рассмотрим уравнение (1.1):

$$\sqrt{w-G} = E\sqrt{w-X} \iff$$

$$\sqrt{w-G} = \int_0^w \frac{\sqrt{w-x}}{w} dx = \frac{2}{3}\sqrt{w} \iff G = \frac{5}{9}w = 5\frac{5}{9}.$$

Заметим, что здесь ожидаемый ущерб равен E[X] = 5 < G.

Следующее семейство функций полезности - квадратичные функции

$$u(w) = w - \alpha w^2, \quad \alpha > 0, w < 1/2\alpha.$$

На рассматриваемом интервале для переменной w функция u строго вогнута и возрастает:

$$u' = 1 - 2\alpha w > 0, \quad u'' = -2\alpha < 0.$$

Несмотря на привлекательность вида таких функций, результаты, полученные с их помощью, часто не удовлетворяют исследователей.

Пример 1.3. Пусть функция полезности ЛПР дается как

$$u(w) = w - 0.01w^2$$
, $w < 50$.

Относительно ущерба известно, что ЛПР сохранит состояние величины w с вероятностью 0.5 и потерпит финансовый убыток, равный 10, с вероятностью 0.5. Требуется определить максимальную премию G за полное возмещение ущерба при значении капитала w=10,15,20,25,30.

Решение. В данном случае уравнение (1.1) приводит к квадратичному уравнению, решая которое для указанных значений w, получим таблицу:

	w=10				
G=	5.2769	5.3113	5.3553	5.4138	5.4951

Из приведенной таблицы видно, что величина премии возрастает с ростом капитала страхователя, хотя здесь резонно сказать, что чем большей суммой располагает ЛПР, тем с большей случайной потерей он готов смириться и тем менее интересна ему страховка.

На практике ущерб происходит с некоторой незначительной вероятностью, и в зависимости от вида застрахованного объекта сушествует распределение величины ущерба при условии его возникновения. Рассмотрим **Пример 1.4.** Известно, что с вероятностью 0.75 собственность не будет повреждена, плотность распределения величины ущерба задается как

$$f(x) = 0.01 \exp(-0.01x), \quad x > 0.$$

Обладатель собственности имеет функцию полезности $u(w) = -\exp(-0.005w)$. Требуется вычислить ожидаемый убыток и максимальную страховую премию за полное возмещение ущерба.

Решение. Ожидаемый убыток вычислим по определению:

$$E[X] = 0.25 \int_0^\infty x 0.01 \cdot \exp(-0.01x) dx = 25.$$

Далее, уравнение (1) в нашей ситуации будет выглядеть так:

$$-\exp(-0.005(w-G)) = -0.75\exp(-0.005w) -$$

$$-0.25 \int_0^\infty \exp(-0.005(w-x)) \cdot 0.01\exp(-0.01x) dx \iff$$

$$\iff \exp(0.005G) = 0.75 + 0.0025 \int_0^\infty \exp(-0.005x) dx = 1.25,$$

отсюда $G = 200 \ln 1.25 = 44.63$.

Замечание. Если в приведенном примере страховщик оплачивал бы половину ущерба, то уравнение для определения премии выглядело бы так:

$$0.75u(w-G) + 0.25 \int_0^\infty u(w-G-0.5x)f(x)dx = 0.75u(w) + 0.25 \int_0^\infty u(w-x)f(x)dx,$$

решая которое, мы получили бы значение G=28.62. При этом средний покрытый риск равен 12.5.

Рассмотрим более общий случай, когда в случае ущерба величины x страховщик выплачивает сумму, равную $I(x) \leq x$. Поскольку ущерб представляет собой случайную величину X, то в идеале премия, которую страхователь должен заплатить за полис, должна быть равна $EI(X) \leq E[X]$. Здесь возникает вопрос: какая функция I является оптимальной с точки зрения функции полезности? Рассмотрим страхование вида

$$I_d(x) = \begin{cases} 0, & \text{если} \quad x < d \\ x - d, & \text{если} \quad x > d. \end{cases}$$

Такой вид страхования называется страхованием, останавливающим потери. Параметр d называется францизой, величина премии P, как уже отмечалось, в идеале должна быть равной среднему компенсированному ущербу, то есть

$$P = \int_{d}^{\infty} (x - d)dF(x)$$

Выражение для величины P может быть представлено в другом виде, что показывает

Пемма 1 Если случайная величина ущерба X имеет конечное среднее, то

$$EI_d(X) = \int_d^\infty (1 - F(x)) dx.$$

Доказательство. Величину 1 - F(x) обозначим через s(x), тогда при A > d

$$\int_{d}^{A} (x-d)dF(x) = (A-d)s(A) + \int_{d}^{A} s(x)dx,$$

правая часть данного равенства при увеличении A стремится к $\int_d^\infty s(x)dx$, поскольку при увеличении A величина As(A) бесконечно мала:

$$0 < As(A) = A \int_{A}^{\infty} dF(x) < \int_{A}^{\infty} x dF(x) \to 0, \quad A \to \infty,$$

что доказывает лемму.

В последнем виде страхования клиент оплачивает лишь разницу между возникшим ущербом и заранее установленной франшизой, если ущерб превосходит эту франшизу. В случае малого ущерба страхователь компенсации не получает. По установленной франшизе выше была установлена нетто-премия P. Напротив, если цена полиса P установлена, то значение франшизы по ней устанавливается однозначно из равенства

$$EI(X) = P (1.4)$$

после подстановки туда выражения $EI(X) = EI_d(X) = \int_d^{\infty} (1 - F(x)) dx$.

Справедлива

Теорема 1 Полис для останавливающего потери страхования обеспечивает максимальное значение величины Eu(w - X + I(X) - P) среди всех полисов, удовлетворяющих (1.4) при заданном значении P.

Доказательство. Из вогнутости функции u имеем

$$u(w-x+I(x)-P)-u(w-x+I_d(x)-P) \le [I(x)-I_d(x)]u'(w-x+I_d(x)-P).$$
 (1.5)

Покажем далее справедливость неравенства

$$[I(x) - I_d(x)]u'(w - x + I_d(x) - P) \le [I(x) - I_d(x)]u'(w - d - P)$$
(1.6)

Неравенство (1.6) очевидно выполнено, если $I(x)=I_d(x)$. В случае $I(x)< I_d(x)$ величина $I_d(x)>0$, а значит, $x-I_d=d$, откуда следует (1.6). Если же $I(x)>I_d(x)$, то из неравенства $I_d(x)-x\geq -d$ и вогнутости функции u имеем

$$u'(w-x+I_d(x)-P) \le u'(w-d-P),$$

отсюда и из неравенства (1.5) следует:

$$E[u(w - X + I(X) - P] - E[u(w - X + I_d(X) - P] \le E[I(X) - I_d(X)] \cdot u'(w - d - P) = (P - P) \cdot u'(w - d - P) = 0.$$

Таким образом, при заданном значении P останавливающее потери страхование является оптимальным с точки зрения ожидаемой полезности для страхователя. Кроме того, справедлива **Теорема 2** При любом заданном значении P останавливающее потери страхование минимизирует величину Var[X - I(X)] на множестве всех функций I(X), удовлетворяющих (1.5).

Справедливость этой теоремы следует из неравенства

$$(x - I(x))^2 - (x - I_d(x))^2 \ge 2(I_d(x) - I(x))(x - I_d(x)) \ge 2(I_d(x) - I(x))d$$

и рассуждений, аналогичных доказательству теоремы 1.

В данном разделе нами был изложен математический подход к объяснению, почему люди, организации покупают страховые полисы, но, конечно, функции полезности не могут сами по себе дать точной оценки цены полиса в конкретных случаях. На практике все виды рисков, которые принимает страховая компания, имеют свою классификацию, в соответствии с которой составляются правила работы с тем или иным видом рисков. Полное изложение этих фактов можно найти в [5, 6].

ЗАДАЧИ

1. Пусть случайный ущерб X задается плотностью вероятности

$$f(x) = 0.1 \exp(-0.1x), \quad x > 0.$$

1. Для полисов пропорционального страхования

$$I(x) = x/2$$

и останавливающего ущерба

$$I_d(x) = \begin{cases} 0, & \text{если} \quad x < 10 \ln 2 \\ x - 10 \ln 2, & \text{если} \quad x > 10 \ln 2. \end{cases}$$

показать, что нетто-премия P в обоих случаях равна 5.

2. Вычислить $Var[X - I(X)], Var[X - I_d(X)].$

Решение. Поскольку

$$E[X] = \int_0^\infty x f(x) dx = \int_0^\infty (1 - F(x)) dx = \int_0^\infty \exp(-0.1x) dx = 10,$$

то P = E[I(X)] = 5. Аналогично

$$E[I_d(X)] = \int_d^\infty \exp(-0.1x) dx = 10 \exp(-0.1d) = 5.$$

Далее,

$$E[X]^{2} = \int_{0}^{\infty} 0.1x^{2} \exp(-0.1x) dx = 100 \int_{0}^{\infty} t^{2} \exp(-t) dt = 100,$$

отсюда

$$Var[X - I(X)] = Var[0.5X] = 0.25Var[X] = 0.25(100 - 25) = 18.25.$$

Здесь мы воспользовались равенством

$$\int t^2 \exp(-t)dt = (-t^2 - 2t - 2) \exp(-t).$$

Рассмотрим теперь случайную величину $(X - I_d(X))$, принимающую значения

$$(x - I_d(x)) = \begin{cases} x, & \text{если} \quad x < 10 \ln 2, \\ 10 \ln 2, & \text{если} \quad x \ge 10 \ln 2. \end{cases}$$

Для вычисления ее дисперсии вычислим первые два момента:

$$E[X - I_d(X)] = E[X] - E[I_d(X)] = 5, \quad E[(X - I_d(X))^2] =$$

$$= \int_0^{10 \ln 2} x^2 0.1 \exp(-0.1x) dx + 100 \ln^2 2 \int_{10 \ln 2}^{\infty} 0.1 \exp(-0.1x) dx = 100(1 - \ln 2)$$

Отсюда

$$Var[X - I_d(X)] = 100(1 - \ln 2) - 25 = 75 - 100 \ln 2 = 5.6853,$$

что почти в 4 раза меньше дисперсии для пропорционального страхования.

2. ЛПР имеет функцию полезности $u(w) = -\exp(-\alpha w)$, $\alpha \in (0, 0.5)$, а величина случайного ущерба имеет χ^2 — распределение с n степенями свободы. Показать, что величина максимальной премии G при условии полного возмещения ущерба больше среднего ущерба $\mu = n$.

Решение. Прежде всего следует заметить, что производящая функция моментов χ^2- распределения есть

$$M_X(\alpha) = E[\exp(\alpha X)] = \frac{1}{2^{n/2}\Gamma(n/2)} \int_0^\infty u^{n/2-1} \exp(u(\alpha - 1/2)) du =$$

$$= \frac{1}{2^{n/2}\Gamma(n/2)} \int_0^\infty ((1/2 - \alpha)u)^{n/2-1} \exp(-(1/2 - \alpha)u) d((1/2 - \alpha)u) (1/2 - \alpha)^{-n/2} =$$

$$= \frac{2^{n/2}}{(1 - 2\alpha)2^{n/2}\Gamma(n/2)} \int_0^\infty \exp(-v)v^{n/2-1} dv = (1 - 2\alpha)^{-n/2},$$

поэтому

$$G = \frac{-n}{2\alpha} \ln(1 - 2\alpha) > n,$$

что следует из неравенства $\ln(1-t) < -t, t > 0$.

- **3.** Петербургский парадокс. Рассмотрим бросание монеты, где замечается номер N- первый номер, когда выпадает орел.
 - а. Определить E[N], Var[N].

- б. Показать, что для случайной величины ущерба $X=2^N$ среднее значение не определено.
 - с. Для функции полезности $u(w) = \ln w$ найти E[u(X)].

Решение. Предполагая бросания монеты независимыми, получим, что распределение случайной величины N есть $f(n)=2^{-n},\quad n=1,2,3,\ldots$ Полагая x=1/2, найдем моменты случайной величины N.

$$E[N] = \sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} nx^{n-1} = g'(x),$$

где функция

$$g(x) = \sum_{n=1}^{\infty} x^n = x/(1-x).$$

Следовательно,

$$E[N] = \frac{1}{2(1-x)^2} = 2.$$

Аналогично находится

$$E[N^{2}] = \sum_{n=1}^{\infty} n^{2}x^{n} = 0.25 \sum_{n=1}^{\infty} n(n-1)x^{n-2} + \sum_{n=1}^{\infty} nx^{n} = 6,$$

откуда

$$Var[N] = E[N^2] - (E[N])^2 = 2.$$

4. Пусть

$$I_d(x) = \begin{cases} 0, & \text{если} \quad x < d \\ x - d, & \text{если} \quad x > d. \end{cases}$$

Для случайного ущерба X:

$$P(X = 3) = P(X = 12) = 0.5, \quad E[I_d(X)] = 3$$

определить значение d.

Решение. Для с.в. $I_d(X)$ в случае d < 3 справедливо

$$I_d(X)$$
) = $\begin{cases} 3-d & \text{с вероятностью 0.5} \\ 12-d, & \text{с вероятностью 0.5}. \end{cases}$

Отсюда $E[I_d(X)] = 7.5 - d$, d = 4.5. Это означает, что d > 3, $E[I_d(X)] = 6 - 0.5d = 3$, и, следовательно, величина d = 6.

5. Для трех ЛПР функции полезности $u_i(w)$, i = 1, 2, 3 определяются как

$$u_1(w) = \left\{ \begin{array}{ll} 0.075w - 1, & \text{если} & w < 10 \\ 0.025w - 0.5, & \text{если} & w > 10; \end{array} \right.$$

$$u_2(w) = \begin{cases} 0.45w - 2, & \text{если} \quad w < 10 \\ 0.15w + 2, & \text{если} \quad w > 10; \end{cases}$$

$$u_3(w) = \begin{cases} 3w - 10, & \text{если} \quad w < 10\\ w + 10, & \text{если} \quad w > 10; \end{cases}$$

Кто из них имеет одинаковые предпочтения для всех экономических альтернатив?

- (А) ЛПР 1 и 2
- (Б) ЛПР 2 и 3
- (В) ЛПР 1 и 3
- (Г) ЛПР 1,2, и 3
- (Д) Ни одно из условий $(A \Gamma)$ не верно.

Решение. Найдем удобный вид для выражений E[u(X)] для любой функции

$$u(w)) = \begin{cases} aw + b, & \text{если } w < w_0 \\ cw + d, & \text{если } w > w_0. \end{cases}$$

Обозначая как и ранее 1 - F(x) через s(x), получим равенство:

$$E[u(X)] = \int_0^{w_0} (ax+b)dF(x) + \int_{w_0}^{\infty} (cx+d)dF(x) =$$

$$= b \int_0^{w_0} dF(x) + d \int_{w_0}^{\infty} dF(x) + a \int_0^{w_0} xdF(x) + c \int_{w_0}^{\infty} xdF(x) =$$

$$= a \int_0^{w_0} s(x)dx + c \int_{w_0}^{\infty} s(x)dx + (d-b+(c-a)w_0)s(w_0) + b.$$

Для полученных коэффициентов выпишем таблицу:

ЛПР	a	c	$d - b + (c - a)w_0$
1	0.075	0.025	0
2	0.45	0.15	1
3	3	1	0

Из коэффициентов таблицы видно, что предпочтения для 1 и 3 одинаковы. При этом предпочтения первого и второго ЛПР не совпадают. Приведем пример функций $s_{1,2}(x)$, для которых при $w_0=10$ имеет место неравенство $Eu_1(X_1) < Eu_1(X_2)$, но в то же время $Eu_2(X_1) > Eu_2(X_2)$:

$$s_1(x) = \begin{cases} 1, & \text{если} \quad x \in [0, 8] \\ (11 - x)/3, & \text{если} \quad x \in [8, 10] \\ 0, & \text{если} \quad x > 10. \end{cases}$$
$$s_2(x) = \begin{cases} 1, & \text{если} \quad x \in [0, 9] \\ 10 - 10x, & \text{если} \quad x \in [9, 10] \\ 0, & \text{если} \quad x > 10. \end{cases}$$

Для них указанные соотношения выполнены, поскольку

$$\int_0^{10} s_1(x)dx = 9\frac{1}{3}, \quad \int_0^{10} s_2(x)dx = 9\frac{1}{2}, \quad s_1(10) = 1/3, \quad s_2(10) = 0.$$

- **6.** У страхователя на счете осталось 2000 у.е., при этом его функция полезности $u(w) = \sqrt{w}, w > 0$. Медицинские издержки случайны и равномерно распределены в пределах от 0 до 1000 у.е. Страхователь должен принять одно из двух решений:
 - (A) заплатить премию P за полное покрытие издержек
 - (Б) заплатить 200 у.е. налога и платить за лечение самому.

Определить такое значение P, при котором эти решения эквивалентны.

Решение. Уравнение для определения P:

$$u(w - P) = E[u(w - 200 - X)].$$

Из этого уравнения получаем:

$$\sqrt{2000 - P} = 0.001 \int_0^{1000} \sqrt{1800 - x} dx,$$

отсюда P = 716.446.

- 7. Функция полезности страхователя задается формулой $u(w) = -\exp(-0.01w)$. Для полиса цены G справедливы два условия:
 - а. иски имеют функцию распределения

$$F(x) = \begin{cases} 1 - 0.2e^{-0.02x}, & \text{если} \quad x > 0\\ 0, & \text{если} \quad x < 0. \end{cases}$$

б. издержки на ведение дела составляют половину ожидаемых исков плюс 0.17G. Определить минимальное значение премии G, при которой страховщик продаст полис.

Решение. Ожидаемый ущерб равен $E[X]=0.004\int_0^\infty x\cdot \exp(-0.02x)dx=10.$ обозначив 5+0.83G через G_1 , рассмотрим уравнение

$$u(w) = E[u(w - X + G_1)].$$

Из него получим равенство для определения G_1 :

$$\exp(0.01G_1) = 0.8 + 0.2E[\exp(\alpha X)] = 0.8 + 0.004 \int_0^\infty \exp(-0.01x) dx = 1.2.$$

Следовательно, $G_1 = 100 \ln 1.2$, G = 28.

2. Модели индивидуального риска

В моделях индивидуального риска изучается поведение одного выделенного сектора из всего набора рисков, принятых страховщиком. В таких моделях считается, что иск может быть предъявлен с вероятностью $q \in (0,1)$ и число возможных исков фиксировано и равно n. Предполагая, что весь ущерб, указанный в иске страхователя, компенсируется страхующей организацией, будем всюду далее отождествлять понятия ущерба и иска. Суммарный иск здесь представляется как сумма заранее известного числа одиночных исков. Если одиночный иск с номером i представляется случайной величиной X_i , то суммарный иск будет равен

$$S = X_1 + X_2 \dots + X_n.$$

В моделях индивидуального риска изучается поведение случайной суммы S.

2.1. Модель одиночного ущерба

Сначала рассмотрим простейший случай $n=1, X_1=X$. Случайная величина X представляется в виде произведения

$$X = IB, (2.1)$$

где I—индикаторная случайная величина, принимающая значение, равное 1 в том и только в том случае, если иск предъявлется, и 0 в противном случае, а B – случайный размер предъявленного иска. Относительно случайной величины I в (2.1) таким образом предполагается, что P(I=1)=q, P(I=0)=1-q. Рассмотрим

Пример 2.5. В краткосрочном страховании жизни вероятность смерти застрахованного лица в результате несчастного случая равна 0.003, а в результате других причин – 0.002. При этом величина страхового возмещения равна 10000 при смерти от несчастного случая и 5000 при смерти от других причин. Требуется определить величину среднего ущерба.

Решение. Условия примера означают, что

$$P(I = 1, B = 10000) = 0.003, \quad P(I = 1, B = 5000) = 0.002,$$

откуда q = P(I = 1) = 0.005. Следовательно, условные вероятности

$$P(B = 10000|I = 1) = 0.6, \quad P(B = 5000|I = 1) = 0.4.$$

Кроме того, средний размер возмещаемого ущерба есть $E[X|I=1]=10000\cdot 0.6+5000\cdot 0.4=8000.$ Отсюда и из (2.1) величина

$$E[X] = E[X|I = 1]q + E[X|I = 0](1 - q) = E[X|I = 1]q = 40.$$

Полученное равенство означает, что в данном случае нетто-премия, равная среднему ущербу, равна 40.

Рассмотрим более сложную ситуацию.

Пример 2.6. При страховании автомобилей известно, что иск предъявляется с вероятностью q=0.1. Распределение величины иска при этом дается равенствами

$$P(B \le x | I = 1) = \left\{ \begin{array}{ccc} 0, & \text{если} & x < 0, \\ 0.8(1 - (1 - x/2000)^2), & \text{если} & x \in (0, 2000), \\ 1, & \text{если} & x \ge 2000, \end{array} \right.$$

$$P(B = 2000|I = 1) = 0.2.$$

Следовательно, плотность вероятности величины иска задается условиями

$$f_B(x) = \begin{cases} 0, & \text{если} \quad x < 0, \\ 0.0008(1 - x/2000), & \text{если} \quad x \in (0, 2000). \end{cases}$$

Приведенные соотношения показывают, что страховщик полностью покрывает ущерб величины от 0 до 2000, а свыше 2000 покрывется только величина, равная 2000. Требуется определить среднее и дисперсию случайного ущерба.

Решение. Из соотношения

$$P(X \le x) = P(IB \le x | I = 0)P(I = 0) + P(IB \le x | I = 1)P(I = 1)$$

следует, что значение F(x) функции распределения случайной величины X равно

$$F(x) = \begin{cases} 0, & \text{если} \quad x < 0, \\ 0.9 + 0.08 \left(1 - \left(1 - x/2000\right)^2\right), & \text{если} \quad x \in (0, 2000), \\ 1, & \text{если} \quad x \ge 2000. \end{cases}$$

При этом вероятности f(0) = P(X = 0) = 0.9, f(2000) = P(X = 2000) = 1 - 0.9 - 0.08 = 0.02. Кроме того,

$$f(x) = F'(x) = 0.00008(1 - x/2000), \quad x \in (0, 2000).$$

Моменты случайной величины X в таком случае вычисляются по формуле

$$E(X^k) = 0 \cdot f(0) + 2000^k \cdot f(2000) + \int_0^{2000} x^k f(x) dx.$$

В частности,

$$E[X] = 2000 \cdot 0.02 + 0.00008 \int_0^{2000} x (1 - x/2000) dx = 93.333,$$

$$E[X^2] = 133333.333, \quad Var(X) = E[X^2] - (E[X])^2 = 124622.2284.$$

В дальнейшем нам понадобятся известные из теории вероятностей следующие соотношения для случайных величин X,Y:

$$E[X] = E[E[X|Y]], \quad Var[X] = Var[E[X|Y]] + E[Var[X|Y]].$$
 (2.2)

Из этих соотношений следует, что если известны среднее и дисперсия предъявляемых исков, то есть известны

$$\mu = E[B|I = 1], \quad \sigma^2 = Var[B|I = 1],$$

то в силу равенств

$$E[X|I=0]=0, \quad Var[X|I=0]=0, \quad E[X|I=1]=E[B|I=1)=\mu$$

справедливы соотношения

$$E[X|I] = \mu I, \quad Var[X|I] = \sigma^2 I.$$

Отсюда получаем, что

$$Var[E[X|I]] = \mu^2 Var[I] = \mu^2 q(1-q), \quad E[Var[X|I]] = \sigma^2 q,$$

 $E[X] = \mu EI = \mu q, \quad Var[X] = \mu^2 q(1-q) + \sigma^2 q.$

Заметим, что в последнем примере мы могли бы вычислять среднее и дисперсию случайной величины X, исходя из полученных соотношений, так как

$$\mu = E[X|I=1] = \int_0^{2000} x f_B(x) dx + 2000 \cdot P(B=2000|I=1) = \int_0^{2000} 0.0008x (1 - \frac{x}{2000}) dx + 2000 \cdot 0.2 = 933.333,$$

откуда вычисляется $\sigma^2 = E[X^2|I=1] - (E[X|I=1])^2 = 462222.81$. Теперь

$$E[X] = \mu q = 93.333, \quad Var[X] = \mu^2 q (1-q) + \sigma^2 q = 124622.2284.$$

Полученные формулы для вычисления среднего и дисперсии случайной величины X по заданному распределению ущерба позволяют вычислить аналогичные характеристики для суммы S суммарного ущерба. Представление случайной величины X в виде произведения IB может быть далее обобщено. Например, для страхования жизни величина иска может быть представлена как IJB, где индикаторная случайная величина I равна 1 в том и только в том случае, когда смерть застрахованного наступила в результате несчастного случая, при этом значение J равно 1 в том случае, когда несчастный случай произошел при исполнении служебных обязанностей.

2.2. Характеристики суммарного ущерба

Рассмотрим различные подходы к описанию S- суммы n случайных величин. Поскольку нас интересуют неотрицательные случайные величины, то в непрерывном случае для n=2 функция распределения суммы S=X+Y есть свертка функций распределения случайных величин X,Y:

$$F_S(s) = (F_X * F_Y)(s) = \int_0^s F_X(s-y) f_Y(y) dy,$$

аналогичное неравенство справедливо для плотности суммы:

$$f_S(s) = (f_X * f_Y)(s) = \int_0^s f_X(s - y) f_Y(y) dy,$$

в дискретном случае интеграл заменяется на соответствующую сумму. Если F_i -функция распределения случайной величины X_i , а F^k функция распределения суммы $S_k = X_1 + X_2 + \ldots + X_k$, то $F^{k+1} = F_{k+1} * F^k$. В том случае, когда слагаемые в сумме S одинаково распределены, функция F^n называется n-кратной сверткой функции F и обозначается как F^{*n} . Необходимо заметить, что в непрерывном случае непосредственное вычисление формулы для выражения свертки как правило представляет трудную задачу. В дискретном случае по заданым таблицам распределений f_i случайных величин X_i можно получить значения распределения свертки исходя из рекуррентной формулы

$$f^{k+1}(s) = \sum_{y \le s} f_{k+1}(s-y) f^k(y).$$

Подчеркнем, что в таком случае можно вычислить любое значение для распределения S, но если требуется получить качественное описание этого распределения, то в таком случае полезны производящие функции моментов: по определению, производящая функция моментов суммы S есть

$$M_S(t) = Ee^{tS} = E(e^{tX_1}e^{tX_2}\cdots e^{tX_n}).$$

Для независимых случайных величин $X_1, X_2, \dots X_n$ величина

$$M_S(t) = M_{X_1}(t) M_{X_2}(t) \cdots M_{X_n}(t).$$

В дальнейшем нам потребуются производящие функции моментов для различных типов распределений. Важно отметить, что с одной стороны, производящая функция моментов определяется своим распределением, а с другой, по заданной производящей функции моментов можно однозначно восстановить распределение. Рассмотрим такой пример.

Пусть три независимые случайные X_i величины распределены по экспоненциальному закону с параметрами $\lambda_i=i, i=1,2,3$. Требуется определить плотность распределения суммы $S=X_1+X_2+X_3$.

Для определения искомой плотности определим производящую функцию каждого слагаемого X_i : поскольку плотность распределения случайной величины X_i равна $f_{X_i} = \lambda_i e^{-\lambda_i x}$, то

$$M_{X_i}(t) = \lambda_i \int_0^\infty e^{tx - \lambda_i x} dx = \frac{\lambda}{\lambda_i - t}, \quad t < \lambda_i.$$

Из независимости случайных величин X_i следует, что производящая функция для суммы

$$M_S(t) = \prod_i \frac{\lambda_i}{\lambda_i - t}.$$

Теперь искомую плотность распределения будем искать в виде

$$f_S(x) = \sum_i c_i \lambda_i e^{-\lambda_i x},$$

где коэффициенты c_i находятся из уравнения

$$\sum_{i} \frac{c_i \lambda_i}{\lambda_i - t} = \frac{\prod_{i} \lambda_i}{\prod_{i} (\lambda_i - t)}.$$

Подставляя значения параметров λ_i в данное равенство, получим: $c_1 = 3, c_2 = -3, c_3 = 1$. Теперь нетрудно проверить, что производящая функция моментов для случайной величины с плотностью $f_S(t) = 3e^{-x} - 6e^{-2x} + 3e^{-3x}$ совпадает с найденной нами функцией $M_S(t)$.

Заметим, что плотность $f_S(t)$ мы могли бы найти непосредственно, последовательно находя свертки:

$$f_1 * f_2(s) = 2 \int_0^s e^{-(s-x)} e^{-2x} dx = 2e^{-s} (1 - e^{-s}),$$

$$f_S(s) = f_1 * f_2 * f_3(s) = 6 \int_0^s (e^{-(s-x)} - e^{-2(s-x)}) e^{-3x} dx = 3e^{-s} - 6e^{-2s} + 3e^{-3s}.$$

Для обозначения натурального логарифма производящей функции моментов будем далее использовать обозначение $\phi(t) = \ln M_X(t)$. Функция $\phi(t)$ позволяет вычислять первые три момента случайной величины X:

$$\phi'(0) = E[X], \quad \phi^{(k)}(0) = m_k = E(X - E[X])^k, \quad k = 2, 3.$$

Действительно, поскольку

$$M_X(0) = 1, \quad \phi'(t) = M_X'(t)/M_X(t),$$

то $\phi'(0) = E[X]$. Аналогично соотношения

$$\phi^{(2)}(t) = \frac{M_X^{(2)}(t)M_X(t) - M_X'(t)^2}{M_X(t)^2},$$

$$M_X^{(3)}(t)M_X(t)^3 - 3M_X^{(2)}(t)M_X'(t)M_X(t)^2 + 2M_X(t)M_X'(t)^2 + 2M_X(t)^2 + 2M_$$

$$\phi^{(3)}(t) = \frac{M_X^{(3)}(t)M_X(t)^3 - 3M_X^{(2)}(t)M_X'(t)M_X(t)^2 + 2M_X(t)M_X'(t)^3}{M_X(t)^4}$$

дают равенства для второго и третьего центральных моментов:

$$\phi^{(2)}(0) = VarX, \quad \phi^{(3)}(0) = E(X - E[X])^3.$$

Третий способ описания распределения суммы S состоит в том, что при большом значении n и независимых одинаково распределенных случайных слагаемых $X_1, X_2, \ldots X_n$ нормированная случайная величина

$$\frac{S - E[S]}{\sqrt{Var[S]}}$$

считается нормальной стандартно распределенной случайной величиной. На практике проверкой независимости и сравнением распределений слагаемых X_i часто пренебрегают, поскольку практически такая проверка бывает затруднительной. Кроме того, нормальная аппроксимация распределения S бывает единственным выходом из положения при недостаточной статистике.

Продемонстрируем, как можно использовать нормальную аппроксимацию для ответа на вопрос, каков должен быть размер собранных премий, чтобы с заданной вероятностью p его хватило для выплат по искам. Величину премии, соответствующую ущербу X_i , будем представлять в виде $(1+\theta)E[X_i]$. Здесь θ - так называемая относительная безопасная нагрузка, а $\theta E[X_i]$ - безопасная нагрузка на нетто-премию, которая равна $E[X_i]$. Суммарная безопасная нагрузка таким образом равна $\theta E[S]$. Для значения p=0.95 будем искать величину θ из равенства

$$P(S \le (1+\theta)E[S]) = 0.95,$$

которое эквивалентно

$$P\left(\frac{S - E[S]}{\sqrt{Var[S]}} \le \frac{\theta E[S]}{\sqrt{Var[S]}}\right) = 0.95.$$

Для стандартного нормального распределения 95-я процентиль равна 1.645, откуда и из равенства

$$\frac{\theta E[S]}{\sqrt{Var[S]}} = 1.645.$$

получаем значение величины θ . Если слагаемые X_i независимы и одинаково распределены, то величина

$$\theta = \frac{1.645\sqrt{nVar(X)}}{nEX}.$$

Нетрудно заметить, что с ростом n значение величины θ убывает со скоростью $1/\sqrt{n}$. Рассмотрим пример применения нормальной аппроксимации функции распределения S, взятый из [1].

Величина исков в автомобильном страховании подчиняется усеченному экспоненциальному распределению, для которого функция распределения

$$F(x) = \begin{cases} 0, & \text{если} \quad x < 0, \\ 1 - e^{-\lambda x}, & \text{если} \quad x \in (0, L) \\ 1, & \text{если} \quad x \ge L \end{cases}$$

Обладатели полисов распределены по двум категориям. Для k-й категории (k=1,2) количество клиентов равно n_k , вероятность страхового случая равна q_k , параметры распределения величины иска равны λ_k , и L_k , значения перечисленных параметров приведены в таблице:

k	n_k	q_k	λ_k	L_k
1	500	0.1	1	2.5
2	2000	0.05	2	5

Требуется определить значение относительной безопасной нагрузки θ , при котором вероятность превышения суммарного иска величины суммарной премии равно 0.05.

Здесь суммарный иск S разбивается на сумму S_1+S_2 , соответствующую двум категориям страхователей. Каждая из сумм $S_k, k=1,2$ представляет собой сумму n_k независимых одинаково распределенных случайных величин исков со средним μ_k и дисперсией σ_k^2 :

$$\mu_k = \int_0^{L_k} x \lambda_k e^{-\lambda_k x} dx + L_k e^{-\lambda_k L_k} = \frac{1 - e^{-\lambda_k L_k}}{\lambda_k},$$

$$\sigma_k^2 = \int_0^{L_k} x^2 \lambda_k e^{-\lambda_k x} dx + L_k^2 e^{-\lambda_k L_k} - \mu_k^2 = \frac{1 - 2\lambda_k L_k e^{-\lambda_k L_k} - e^{-2\lambda_k L_k}}{\lambda_k^2}.$$

Если теперь X_k — произвольное слагаемое из суммы $S_k, k=1,2,$ то из равенств $E[X_k]=q_k\mu_k, \quad Var[X_k]=\mu_k^2q_k(1-q_k)+\sigma_k^2q_k$ получим

$$E[X_1] = 0.09179$$
, $E[X_2] = 0.025$, $Var[X_1] = 0.13411$, $Var[X_2] = 0.02436$.

Отсюда

$$E[S] = n_1 E[X_1] + n_2 E[X_2] = 95.89, \quad VarS = n_1 Var[X_1] + n_2 Var[X_2] = 115.78,$$

и величина

$$\theta = \frac{1.645\sqrt{115.78}}{95.89} = 0.1846.$$

Таким образом, в этом примере нетто-премия равна E[S] = 95.89, а премия с учетом безопасной нагрузки равна $(1 + \theta)E[S] = 113.5913$.

ЗАДАЧИ

1. Пусть три случайные величины X_i независимы и равномерно распределены на интервале (0,1). Найти плотность распределения суммы $S=X_1+X_2+X_3$.

Решение. Плотность распределения каждого слагаемого X_i есть $f(x) = 1, x \in (0,1)$. Тогда для $s \in (0,1)$ произведение

$$f(s-x)f(x) = 1 \iff x \in (0,s).$$

Следовательно, для $s \in (0,1)$ значение $f^{*2}(s) = \int_0^s dx = s$. Если же $s \in (1,2)$, то

$$f(s-x)f(x) = 1 \Longleftrightarrow x \in (s-1,1).$$

Значит, при таких x величина $f^{*2}(s) = \int_{s-1}^1 dx = 2-s$. Таким образом, мы определили плотность распределения суммы двух слагаемых $X_1 + X_2$. Теперь для $s \in (0,1)$ свертка

$$f^{*3}(s) = \int_0^s f^{*2}(x)f(s-x)dx = \int_0^s xdx = s^2/2.$$

Если $s \in (1, 2)$, то

$$f^{*3}(s) = \int_{s-1}^{1} (s-x)dx + \int_{0}^{s-1} (2-s+x)dx = \frac{2s-s^2}{2} + \frac{4s-s^2-3}{2} = \frac{-2s^2+6s-3}{2}.$$

наконец для $s \in (2,3)$

$$f^{*3}(s) = \int_{s-2}^{1} (2 - s + x) dx = \frac{(s-3)^2}{2}.$$

2. Найти значение р из условия $f_1*f_2*f_3(4)=0.1$,если для независимых дискретных случайных величин X_1,X_2,X_3 имеются значения вероятностей $f_i(x)$:

x	$f_1(x)$	$f_2(x)$	$f_3(x)$
0	0.4	0.5	p
1	0.4	0.3	1-p
2	0.2	0.2	0

Обозначим $f_1 * f_2$ через g, тогда из таблицы следует, что:

$$f_1 * f_2 * f_3(4) = g(2) * f_3(2) + g(3) * f_3(1) + g(4) * f_3(0).$$

При этом:

$$g(4) = f_1(2) * f_2(2), g(3) = f_1(1) * f_2(2) + f_1(2) * f_2(1),$$

$$g(2) = f_1(0) * f_2(2) + f_1(1) * f_2(1) + f_1(2) * f_2(0).$$

Поскольку

$$g(3) = 0.14$$
, $g(4) = 0.04$, $f_3(1) = 1 - p$, $f_3(0) = p$,

то отсюда и из условия задачи следует, что $0.14 \cdot (1-p) + 0.04 \cdot p = 0.1$, из чего находим p = 0.4.

3. При страховании от огня известно, что вероятность страхового случая равна 0.01, а величина страхового возмещения представляет собой случайную величину, распределенную по закону Парето с плотностью $\alpha x_0^{\alpha}/x^{\alpha+1}$, $x>x_0$. Предполагая независимость предъявляемых исков, при количестве страхователей, равном 10000, и значении параметра $\alpha=3, x_0=10$, определить цену полиса, если страховая компания намеревается быть способной покрыть все иски с вероятностью, не менее 0.95.

Решение. Если X = IB- случайная величина иска, то среднее страховое возмещение равно

$$\mu = \int_{x_0}^{\infty} \alpha x_0^{\alpha} / x^{\alpha} dx = 15,$$

Далее,

$$E(X^2|I=1) = \int_{x_0}^{\infty} \alpha x_0^{\alpha} / x^{\alpha-1} dx = \alpha x_0^{\alpha} / (\alpha - 2) = 300.$$

$$\sigma^2 = E(X^2|I=1) - \mu^2 = 300 - 225 = 75.$$

Отсюда

$$EX = \mu q = 0.15$$
, $VarX = \mu^2 q(1-q) + \sigma^2 q = 2.9775$.

Величина относительной страховой нагрузки θ определяется из условия

$$\theta \ge \frac{1.645\sqrt{nVarX}}{nEX} = 0.1892.$$

Следовательно, цена полиса должна быть не менее $0.15 \cdot 1.1892 = 0.1784$.

4. Производящая функция моментов случайной величины X есть

$$M_X(t) = (1 - 2t)^{-5}, \quad t < 0.5.$$

- а. Определить характер распределения случайной величины X.
 - б. Найти EX, VarX.
 - в. Определить величину z из условия P(X > z) = 0.05.

Решение. а. Рассмотрим случайную величину, имеющую гамма-распределение с параметрами α, β , ее плотность распределения есть

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-\beta x} x^{\alpha - 1}.$$

Тогда для нее производящая функция моментов есть

$$\int_0^\infty e^{tx} f(x) dx = \left(\frac{\beta}{\beta - t}\right)^\alpha,$$

что соответствует нашему выражению при $\alpha=5, \quad \beta=1/2.$ Таким образом, случайная величина X имеет гамма-распределение с указанными параметрами.

б. Для функции $\phi(t) = \ln M_X(t)$ имеем

$$EX = \phi'(0) = 10, \quad VarX = \phi''(0) = 20.$$

в. Заметим, что гамма-распределение при $\alpha = n/2$, $\beta = 1/2$ совпадает с χ^2 -распределением с n степенями свободы. В нашем случае мы получаем, что случайная величина X имеет χ^2 -распределение с 10 степенями свободы. Из таблицы доверительных границ для χ^2 -распределения получаем, что значение z равно 18.3.

3. Модели коллективного риска

В моделях коллективного риска весь портфель полисов, имеющихся в распоряжении страховщика, трактуется как некий объединенный полис, при этом количество возможных исков заранее неизвестно и представляет собой случайную величину.

Эта ситуация типична для коллективного страхования, откуда и происходит данный термин. Таким образом, в отличие от предыдущего раздела мы будем изучать свойства модели суммарного иска как свойства случайной величины

$$S = X_1 + X_2 + \dots X_N,$$

где случайные величины $N, X_1, X_2, \ldots X_N$ независимы, причем случайные величины $X_1, X_2, \ldots X_N$ одинаково распределены и представляют собой величины исков. Из сказанного вытекает, что общий иск S определяется двумя характеристиками: распределением дискретной случайной величины N и функцией распределения случайных величин X_i .

3.1. Распределение суммарного иска

Для описания распределения суммарного иска применим аппарат производящих функций моментов. Поскольку случайные величины X_i одинаково распределены, то вместо X_i всюду далее будем писать просто X. Обозначим k—й момент случайной величины X через p_k :

$$p_k = E(X^k).$$

Тогда из (2.2) следует:

$$E[S] = E(E(S|N)) = p_1 EN, \quad VarS = E(Var(S|N)) + Var(E(S|N)) =$$

$$E(NVar(S|N)) + Var(E(S|N)) =$$

$$E(N)VarX + p_1^2 VarN = (p_2 - p_1^2)EN + p_1^2 VarN.$$

Аналогично выводится выражение для производящей функции моментов суммарного иска S:

$$M_S(t) = Ee^{tS} = E(E(e^{tS}|N)) = E(M_X(t)^N) = E(e^{N \ln M_X(t)}) = M_N(\ln M_X(t)).$$

Полученное выражение позволяет сразу получить формулу для производящей функции случайной суммы S, если таковые имеются для величин N,X. Рассмотрим пример.

Пусть N имеет геометрическое распределение:

$$P(N = n) = pq^n, \quad n = 0, 1, 2, \dots,$$

где 0 < q < 1, p = 1 - q. Тогда

$$M_N(t) = Ee^{tN} = \sum_{n=0}^{\infty} p(qe^t)^n = \frac{p}{1 - qe^t},$$

откуда

$$M_S(t) = \frac{p}{1 - qM_X(t)}.$$

Если здесь случайная величина X имеет экспоненциальное распределение с параметром $\lambda=1,$ то $M_X(t)=(1-t)^{-1},\quad t<1$ и тогда при t<1 функция

$$M_S(t) = p/(1 - \frac{q}{1-t}) = (p-pt)/(p-t) = (p^2 - pt + pq)/(p-t) = p + q\frac{p}{p-t}.$$

Полученное равенство позволяет легко подобрать функцию распределения суммарного иска S, именно, S имеет функцию распределения

$$F_S(x) = p \cdot 1 + q \cdot (1 - e^{-px}) = 1 - qe^{-px}.$$

Последнее справедливо, поскольку для этой функции распределения производящая функция моментов есть

$$pe^{t\cdot 0}q\int_0^\infty pe^{-px+tx}dx = p + \frac{q}{p-t},$$

что совпадает с выражением для $M_S(t)$. Заметим, что $F_S(0) = p$, поэтому S имеет смешанное распределение.

Для функции распределения суммы S справедливо очевидное равенство

$$F(x) = P(S \le x) = \sum_{n=0}^{\infty} P(S \le x | N = n) P(N = n) = \sum_{n=0}^{\infty} P^{*n}(x) P(N = n)$$

Для дискретного случая аналогично получаем равенство для распределения дискретной суммы S :

$$f(x) = \sum_{n=0}^{\infty} p^{*n}(x)P(N=n).$$

В этом случае вероятности $p^{*n}(x) = P(X_1 + X_2 + \dots X_n = x)$ легко вычисляются по рекуррентным формулам

$$p^{*(n+1)}(x) = \sum_{y \le x} p(y) p^{*n}(x - y).$$

В некоторых случаях для непрерывных распределений плотность распределения $p^{*n}(x)$ определяется аналитически. Например, для экспоненциального распределения с параметром $\lambda=1$ функция

$$p^{*n}(x) = \frac{e^{-x}x^{n-1}}{(n-1)!}.$$

Данное равенство очевидно для случая n=1, и если предположить его справедливость для произвольного n, то при n+1 по определению плотность

$$p^{*(n+1)}(s) = \int_0^s p^{*n}(s-x)e^{-x}dx = \int_0^s \frac{e^{-(s-x)}(s-x)^{(n-1)}}{(n-1)!}e^{-x}dx = -\frac{e^{-s}}{(n-1)!}\int_0^s (s-x)^{(n-1)}dx = \frac{e^{-s}s^n}{n!},$$

откуда следует справедливость выражения для $p^{*n}(x)$. Следовательно, для экспоненциального распределения случайной величины X вероятность

$$P(S > s | N = n) = \int_{s}^{\infty} \frac{e^{-x}x^{n-1}}{(n-1)!} dx = -\frac{e^{-x}x^{n-1}}{(n-1)!} \Big|_{s}^{\infty} + \int_{s}^{\infty} \frac{e^{-x}x^{n-2}}{(n-2)!} dx = \frac{e^{-s}s^{n-1}}{(n-1)!} + \frac{e^{-s}s^{n-2}}{(n-2)!} + \dots e^{-x},$$

откуда вытекает, что

$$1 - F_S(s) = \sum_{n=1}^{\infty} P(N=n)P(S > s|N=n) = \sum_{n=1}^{\infty} P(N=n) \sum_{i=0}^{n-1} \frac{e^{-s}s^i}{i!}.$$

3.2. Распределение числа исков

Первое распределение, которое мы рассмотрим - это распределение Пуассона:

$$P(N=n) = \exp(-\lambda) \frac{\lambda^n}{n!}, \quad n = 0, 1, 2, \dots$$

Для данного распределения

$$M_N(t) = \exp(-\lambda) \sum_{n=0}^{\infty} \frac{(\lambda \exp(t))^n}{n!} = \exp(\lambda(\exp(t) - 1)),$$

$$\phi_N(t) = \lambda(\exp(t) - 1), \ \phi_N^{(k)}(t) = \lambda \exp(t), \ k = 1, 2, \dots,$$

откуда $EN = VarN = \lambda$, Кроме того,

$$M_S(t) = \exp(\lambda(M_X(t) - 1)), \quad \phi_S(t) = \lambda(M_X(t) - 1),$$
 (3.1)

поэтому для пуассоновского распределения числа N

$$E[S] = \lambda p_1, \quad VarS = \lambda p_2. \tag{3.2}$$

Определение 3.1. Будем говорить, что случайная величина S имеет обобщенное распределение Пуссона с параметрами $(\lambda, P(x))$, если $S = X_1 + X_2 + \dots X_N$, где X_i независимы, одинаково распределениы с функцией распределения P(x), а случайная величина N имеет распределение Пуассона с параметром λ .

Недостатком обобшенного распределения Пуассона является совпадение среднего и дисперсии числа N. В частности, когда дисперсия превосходит среднее для N, то данное распределение не подходит.

Рассмотрим другое распределение числа исков N- отрицательное биномиальное распределение:

$$P(N = n) = {r + n - 1 \choose n} p^r q^n, \quad n = 0, 1, 2, \dots,$$

где величины

$$\binom{r+n-1}{n} = \frac{r(r+1)\dots(r+n-1)}{n!}$$

суть коэффициенты разложения функции

$$f(x) = (1-x)^{-r}$$

по формуле Маклорена. Это распределение определяется двумя параметрами r>0 и $p\in(0,1), q=1-p$. Из равенства

$$(1-x)^{-r} = \sum_{n=0}^{\infty} {r+n-1 \choose n} x^n, \quad |x| < 1$$

следует выражение для производящей функции моментов отрицательного биномиального распределения:

$$M_N(t) = \sum_{n=0}^{\infty} \binom{r+n-1}{n} p^r q^n e^{tn} =$$

$$p^r \sum_{n=0}^{\infty} \binom{r+n-1}{n} (qe^t)^n = p^r (1-qe^t)^{-r} = \left(\frac{p}{1-qe^t}\right)^r, \quad qe^t < 1,$$

$$\phi_N(t) = r \ln p - r \ln(1-q \exp(t)), \quad \phi_N^{'}(t) = rq \exp(t)/(1-q \exp(t))$$

$$\phi_N^{''}(t) = \frac{rq \exp(t)}{(1-q \exp(t))^2}.$$

Отсюда легко получить

$$EN = \frac{rq}{p}, \quad VarN = \frac{rq}{p^2}.$$

Из этих равенств следует, что для рассматриваемого распределения $EN = p \cdot VarN < VarN$.

Определение 3.2. Случайная величина S имеет обобщенное отрицательное биномиальное распределение с параметрами (p,r,P(x)), если $S=X_1+X_2+\ldots X_N$, где X_i независимы, одинаково распределениы с функцией распределения P(x), а случайная величина N имеет отрицательное биномиальное распределение с параметрами (p,r).

Для производящей функции моментов обобщенного отрицательного биномиального распределения справедливо равенство

$$M_S(t) = \left(\frac{p}{1 - qM_X(t)}\right)^r \tag{3.3}$$

Отсюда получаем, что

$$\phi_S(t) = r \ln p - r \ln(1 - qM_X(t)), \ \phi'_S(t) = \frac{rqM'_X(t)}{1 - qM_X(t)},$$

$$\phi_S''(t) = \frac{rqM_X''(t)(1 - qM_X(t)) + rq^2M_X'(t)^2}{(1 - qM_X(t))^2},$$

$$E[S] = \frac{rq}{p}p_1, \quad VarS = \frac{rq}{p}p_2 + \frac{rq^2}{p^2}p_1^2.$$
(3.4)

Мы рассмотрели некоторые примеры распределений числа исков. Приведем в таблице основные свойства этих и некоторых других распределений:

Распределение <i>N</i>	P(N=n)	EN	VarN	$M_N(t)$
Бернулли	$np^n + (1-n)q^{1-n}$	p	pq	$pe^t + q$
	$q = 1 - p, n \in \{0, 1\}$			
Биномиальное	$\binom{m}{n}p^nq^{m-n}$	pm	pqm^2	$(pe^t + q)^m$
Геометрическое	pq^n	q/p	q/p^2	$p/(1-qe^t)$
Пуассоновское	$e^{-\lambda}\lambda^n/n!$	λ	λ	$e^{\lambda(e^t-1)}$
Отрицательное	$\binom{r+n-1}{n}p^rq^n$	rq/p	rq/p^2	$(p/(1-qe^t))^r$
биномиальное				
Логарифмическое	$-p^n/(n\ln q)$	$-p/(q \ln q)$	$-p/(q^2 \ln q)$	$\ln(1 - pe^t) / \ln q$

3.3. Примеры распределения индивидуальных исков

При исследовании свойств распределений индивидуальных исков все зависит от природы возможных ущербов. Очевидно, что при страховании космических рисков возможные ущербы имеют распределение, отличное от распределения ущербов в автомобильном или в медицинском страховании. Рассмотрим небольшой круг примеров распределения индивидуальных исков.

При страховании от огня последствия как для потерпевшего владельца поврежденного объекта, так и для страховой компании могут оказаться весьма тяжелыми, поэтому такого рода ущербы описываются распределениями с "тяжелыми хвостами," то есть плотность такого распределения убывает достаточно медленно при стремлении аргумета к бесконечности. Примерами таких распределений являются логнормальное распределение, распределение Парето и смесь экспоненциальных распределений с плотностью вида $p(x) = \sum p_i \alpha_i e^{-\alpha_i x}, \sum p_i = 1$.

В автомобильном страховании результатом дорожного инцидента являются, как правило, менее значительные с материальной точки зрения последствия. Кроме того, статистика по таким происшествиям гораздо более богата и поэтому возможные иски могут быть предсказаны более точно. В силу этих обстоятельств индивидуальные иски в автомобильном страховании принято описывать гамма-распределением, параметры распределения подбираются по имеющейся статистике.

В нижеследующей таблице приведены некоторые примеры распределений индивидуальных исков и их основные характеристики.

Распределение Х	f(x)	EX	VarX	$M_X(t)$
Экспоненциальное	$\lambda e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	$\lambda/(\lambda-t)$
Гамма	$\beta^{\alpha} x^{\alpha-1} e^{-\beta x} / \Gamma(\alpha)$	α/β	α/β^2	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$
Нормальное	$\frac{1}{\sqrt{2\pi}\sigma}e^{-0.5((x-a)/\sigma)^2}$	a	σ^2	$e^{at+0.5\sigma^2t^2}$
Логнормальное	$\frac{1}{x\sqrt{2\pi}\sigma}e^{-0.5((\ln x-a)/\sigma)^2}$	$e^{a+0.5\sigma^2}$	$e^{2a+\sigma^2}(e^{\sigma^2}-1)$	-
Парето	$\alpha/(1+x)^{\alpha+1}$	$\frac{1}{\alpha-1}$	$\frac{\alpha}{[(\alpha-1)^2(\alpha-2)]}$	-
Вейбулла	$\alpha x^{\alpha-1}e^{-x^{\alpha}}$	$\Gamma(1+\frac{1}{\alpha})$	$\Gamma(1+\frac{2}{\alpha})$	-

3.4. Свойства обобщенного распределения Пуассона

Если параметр λ , определяющий случайную величину N, не является фиксированной величиной, а представляет собой случайную величину Λ , то распредление числа исков N является сложным (mixed) распределением. Такие распределения применяются, когда, например, страхователи разбиты на неоднородные группы, для каждой из которых характеристики случайного числа исков различны. Если случайная величина Λ имеет плотность распределения $u(\lambda,)$ то для такого распределения

$$P(N=n) = \int_0^\infty P(N=n|\Lambda=\lambda)u(\lambda)d\lambda = \int_0^\infty \frac{\lambda^n e^{-\lambda}}{n!}u(\lambda)d\lambda.$$

Отсюда следует, что

$$EN = E(E(N|\Lambda)) = E(\Lambda), \quad VarN = E(\Lambda) + Var(\Lambda).$$

то есть, как и для отрицательного биномиального распределения EN < VarN. Аналогичным образом получаем, что

$$M_N(t) = E(e^{tN}) = E(E(e^{tN}|\Lambda)) = E(e^{\Lambda(e^t-1)}) = M_{\Lambda}(e^t-1).$$

Отсюда следует, что для производящей функции моментов суммарного иска S

$$M_S(t) = M_{\Lambda}(M_X(t) - 1).$$

Рассмотрим следующий пример.

Пусть случайная величина Λ имеет гамма-распределение с параметрами $\alpha, \beta,$ то есть плотность u(x) случайной величины Λ есть

$$u(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0.$$

Напомним, что по определению функция

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx,$$

и при $\alpha=1,\quad \beta=n$ гамма-распределение является χ^2 -распределением с n степенями свободы. Для гамма-распределения производящая функция моментов

$$M_{\Lambda}(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}, \quad t < \beta,$$

следовательно,

$$M_S(t) = \left(\frac{\beta}{\beta + 1 - e^t}\right)^{\alpha} = \left(\frac{\beta/(\beta + 1)}{1 - (1 - \beta/(\beta + 1))e^t}\right)^{\alpha},$$

это означает, что случайная величина N имеет отрицательное биномиальное распределение с параметрами $r = \alpha$, $p = \beta/(\beta + 1)$, $q = 1/(\beta + 1)$. Кроме того,

$$M_S(t) = \left(\frac{\beta}{\beta + 1 - M_X(t)}\right)^{\alpha},$$

откуда следует, что

$$E[S] = \frac{\alpha p_1}{1+\beta}, \quad VarS = \frac{\alpha p_2}{1+\beta} + \frac{\alpha p_1^2}{(1+\beta)^2}.$$

Вернемся к случаю, когда параметр распределения Пуассона является фиксированной величиной. Справедлива

Теорема 3 Если независимые случайные суммы S_i , i = 1, 2, ... m имеют обобщенное распределение Пуассона с параметрами λ_i и функциями распределения величины исков $P_i(x)$, то сумма

$$S = S_1 + S_2 + \dots S_m \tag{3.5}$$

имеет обобщенное распределение Пуассона с параметром

$$\lambda = \sum_{i=1}^{m} \lambda_i$$

и функцией распределения величины иска

$$P(x) = \sum_{i=1}^{m} \frac{\lambda_i}{\lambda} P_i(x).$$

Доказательство. Из представления (3.1) и независимости сумм S_i имеем

$$M_S(t) = \prod_{i=1}^m M_{S_i}(t) = exp\{\sum_{i=1}^m \lambda_i (M_{S_i}(t) - 1)\}.$$

Полученное равенство перепишем в виде

$$M_S(t) = exp\{\lambda \left[\sum_{i=1}^m \frac{\lambda_i}{\lambda} M_{S_i}(t) - 1\right]\},\,$$

откуда следует, что функция $M_S(t)$ является производящей функцией моментов случайной суммы, имеющей обобщенное распределение Пуассона с параметром λ и функцией распределения величин иска P(x).

Пемма 2 Пусть случайные величины N_i , $i=1,2,\ldots m$ независимы и имеют пуассоновское распределение с параметрами λ_i . Тогда для произвольных вещественных коэффициентов $x_1, x_2, \ldots x_m$ сумма

$$S = \sum_{i=1}^{m} x_i N_i \tag{3.6}$$

имеет обобщенное распределение Пуассона с параметром

$$\lambda = \sum_{i=1}^{m} \lambda_i$$

распределение величины индивидуального иска равно

$$p(x) = \begin{cases} \frac{\lambda_i}{\lambda}, & ecnu \quad x = x_i \in \{x_1, x_2, \dots x_m\} \\ 0, & endownoon change. \end{cases}$$

Доказательство. Заметим, что каждое слагаемое в сумме (3.6) имеет обобщенное распределение Пуассона с параметром λ_i и случайной величиной иска, принимающей значение x_i с вероятностью 1. Теперь остается воспользоваться теоремой 3.

3.5. Точные методы вычисления параметров распределения обобщенного закона Пуассона в дискретном случае

Если в обобщенном законе Пуассона имеет место дискретное распределение величины иска, то справедливо утверждение, обратное теореме 3. Именно, пусть индивидуальные иски, как и ранее, независимы, одинаково распределены и принимают значения $x_1, x_2, \ldots x_m$ с соответствующими вероятностями

$$\pi_i = p(x_i). (3.7)$$

Пусть далее N_i -количество слагаемых в сумме S, принимающих значение x_i . Тогда сумма

$$S = x_1 N_i + x_2 N_2 + \dots + x_m N_m. \tag{3.8}$$

При этом, конечно, величина $N=N_1+N_2+\ldots N_m$. В общем случае случайные величины зависимы, но для обобщенного распределения Пуассона эти случайные величины оказываются независимыми. Прежде чем доказывать этот интересный факт, рассмотрим полиномиальное распределение и соответствующую производящую функцию моментов. Пусть производится n независимых испытаний, каждое испытание имеет m возможных исходов $i=1,2,\ldots m$, при этом π_i - вероятность исхода i, не зависит от номера испытания. Далее, N_i - случайное количество испытаний с исходом i. Тогда

$$\sum_{i=1}^{m} \pi_i = 1, \quad \sum_{i=1}^{m} N_i = n$$

а совместное распределение случайных величин $N_1, N_2, \dots N_m$ определяется как

$$P(N_1 = n_1, N_2 = n_2, \dots, N_m = n_m) = \frac{n!}{n_1! n_2! \cdots n_m!} \pi_1^{n_1} \pi_2^{n_2} \cdots \pi_m^{n_m};$$

Тогда производящая функция моментов для такого распределения определяется как

$$E\{exp\sum_{i=1}^{m} t_i N_i\} = (\pi_1 e^{t_1} + \pi_2 e^{t_2} \cdots + \pi_m e^{t_m})^n.$$

Таким образом полиномиальное распределение определяется количеством испытаний n и набором вероятностей $\{\pi_i, i=1,2,\ldots,m\}$. Справедлива

Теорема 4 Если сумма (3.5) имеет обобщенное распределение Пуассона, определяемое параметром λ и дискретным распределением величин исков (3.7), то случайные величины N_1, N_2, \ldots, N_m независимы и имеют пуассоновское распределение с параметрами $\lambda_i = \lambda \pi_i$.

Доказательство. Определим производящую функцию моментов совместного распределения случайных величин N_1, N_2, \ldots, N_m . Для этого заметим, что эти случайные величины определены так же, как соответствующие величины в полиномиальном распределении. Поэтому при условии N=n совместное распределение N_1, N_2, \ldots, N_m полиномиально. Отсюда вытекает, что

$$E\{exp\sum_{i=1}^{m} t_{i}N_{i}\} = \sum_{n=1}^{\infty} E\{exp\sum_{i=1}^{m} t_{i}N_{i}|N=n\}P(N=n) =$$

$$\sum_{n=1}^{\infty} (\pi_{1}e^{t_{1}} + \pi_{2}e^{t_{2}} + \dots + \pi_{m}e^{t_{m}})^{n} \frac{e^{-\lambda}\lambda^{n}}{n!} =$$

$$e^{-\lambda} \sum_{n=1}^{\infty} (\lambda_{1}\pi_{1}e^{t_{1}} + \lambda_{2}\pi_{2}e^{t_{2}} + \dots + \lambda_{m}\pi_{m}e^{t_{m}})^{n}/n! =$$

$$exp(-\lambda)exp(\lambda\pi_{1}e^{t_{1}} + \lambda\pi_{2}e^{t_{2}} + \dots + \lambda\pi_{m}e^{t_{m}}) = \prod_{i=1}^{m} exp[\lambda\pi_{i}(e^{t_{i}} - 1)],$$

в последнем равенстве мы использовали условие $\sum_{i=1}^m \pi_i = 1$. В этом равенстве получено разбиение производящей функции совместного распределения на произведение производящих функций с параметрами t_i , причем в каждый i- й множитель входит только параметр t_i , что означает независимость случайных величин N_i . Кроме того, каждый множитель $exp[\lambda \pi_i(e^{t_i}-1)]$ представлет собой производящую функцию моментов пуассоновского распределения с параметром $\lambda_i = \lambda \pi_i$.

Доказанная теорема имеет важное практическое применение. Именно, если суммарный иск имеет обобщенное распределение Пуассона, определяемое параметром λ и дискретным распределением величин исков $\pi_i = p(x_i), \quad i = 1, 2, \ldots, m$, то вероятности $f(x_i) = P(S = x_i), \quad i = 1, 2, \ldots, m$ можно вычислить, получив свертку распределений m случайных величин $x_i N_i$, то есть свертку фиксированного числа слагаемых.

Как следствие из доказанной теоремы следует заметить, что для суммарного иска (3.8) справедливы равенства

$$E[S] = \sum_{i=1}^{m} x_i \lambda_i, \quad VarS = \sum_{i=1}^{m} x_i^2 \lambda_i.$$

Рассмотрим следующий пример. Пусть общий иск S имеет обобщенное распределение Пуассона, определяемое параметром λ и дискретным распределением величины иска:

$$\lambda = 0.5, \quad P(X = 1) = 0.5, \quad P(X = 4) = P(X = 5) = 0.25.$$
 (3.9)

Требуется найти величины $f(x) = P(S=x), \quad x \in \{1,2,3,4,5\}.$ Сначала применим прямой метод вычисления сверток по формуле

$$f(x) = \sum_{n=1}^{\infty} P(S = x | N = n) P(N = n) = \sum_{n=1}^{\infty} p^{*n}(x) \frac{e^{-\lambda} \lambda^n}{n!}, \quad x \ge 1,$$
$$f(0) = e^{-\lambda} = 0.6071991.$$

Полученные данные приведем в таблице

x	p(x)	$p^{*2}(x)$	$p^{*3}(x)$	$p^{*4}(x)$	$p^{*5}(x)$	f(x)
0	0	0	0	0	0	0.60653
1	0.5	0	0	0	0	0.15163
2	0	0.25	0	0	0	0.01890
3	0	0	0.125	0	0	0.001585
4	0.25	0	0	0.0625	0	0.0759
5	0.25	0.25	0	0	0.03125	0.094775
n	1	2	3	4	5	
P(N=n)	0.303265	0.0758	0.0126	0.00158	0.000158	

Теперь вычислим те же величины f(x) используя результат теоремы 4, используя равенства

$$f(x) = P(N_1 + 4N_4 + 5N_5 = x), \quad \lambda_1 = 0.25, \quad \lambda_4 = \lambda_5 = 0.125,$$

$$P(N_i = 0) = e^{-\lambda_i}, \quad P(iN_i = x) = \frac{e^{-\lambda_i} \lambda_i^{x/i}}{(x/i)!}, \quad i = 1, 4, 5$$

и представляя данные в аналогичной таблице:

x	$P(N_1 = x)$	$P(4N_4 = x)$	$P(5N_5 = x)$	$P(N_1 + 4N_4 = x)$	f(x)
0	0.7788	0.882497	0.882497	0.687289	0.60653
1	0.1947	0	0	0.171822	0.151632
2	0.024338	0	0	0.021478	0.01894
3	0.002029	0	0	0.00179	0.00158
4	0.000127	0.110312	0	0.086023	0.075915
5	0.00000634	0	0.110312	0.01896	0.094775

Как видно из построения таблиц, последний метод имеет преимущество по количеству вычислений. Рассмотрим третий метод вычисления вероятностей распределения, который применим для целочисленных значений исков. Прежде всего заметим, что поскольку случайные величины одинаково распределены, то условные средние $E(X_k|X_1+X_2+\ldots+X_{n+1}=x)$ одинаковы для всех $k=1,2,\ldots,n+1$. Поскольку их сумма равна x, то

$$E(X_k|X_1 + X_2 + \ldots + X_{n+1} = x) = x/(n+1)$$

для всякого $k=1,2,\ldots,n+1$. Если возможные значения X_k суть $\{0,1,2,\ldots\}$, то отсюда и из независимости X_i следует равенство

$$E(X_k|X_1 + X_2 + \dots + X_{n+1} = x) = \sum_{i=1}^{\infty} iP(X_k = i|X_1 + X_2 + \dots + X_{n+1} = x) = \frac{\sum_{i=1}^{\infty} ip(i)p^{*n}(x-i)}{p^{*(n+1)}(x)} = \frac{x}{n+1}.$$

Следовательно, для всякого $x \ge 1$ вероятность

$$f(x) = P(S = x) = \sum_{n=0}^{\infty} p^{*n}(x) P(N = n) = \sum_{n=0}^{\infty} p^{*(n+1)}(x) \frac{e^{-\lambda} \lambda^{n+1}}{(n+1)!} =$$

$$\sum_{n=0}^{\infty} e^{-\lambda} \frac{\lambda^{n+1}}{(n+1)!} (\frac{n+1}{x}) (\frac{x}{n+1} p^{*(n+1)}(x)) =$$

$$\sum_{n=0}^{\infty} \sum_{i=1}^{\infty} e^{-\lambda} \frac{\lambda^{n+1}}{(n+1)!} (\frac{n+1}{x}) i p(i) p^{*n}(x-i) = \sum_{i=1}^{\infty} \sum_{n=0}^{\infty} e^{-\lambda} \frac{\lambda^{n+1}}{n!} \frac{i}{x} p(i) p^{*n}(x-i) =$$

$$\sum_{i=1}^{\infty} \frac{i}{x} \lambda p(i) \sum_{n=0}^{\infty} p^{*n}(x-i) e^{-\lambda} \frac{\lambda^{n}}{n!} = \sum_{i=1}^{\infty} \frac{i}{x} \lambda_{i} f(x-i).$$

Следовательно, здесь мы пришли к рекуррентному соотношению

$$f(x) = \sum_{i=1}^{\infty} \frac{i}{x} \lambda_i f(x-i). \tag{3.10}$$

Например, для x = 1, 2 отсюда вытекает, что

$$f(1) = \lambda_1 f(0) = \lambda_1 e^{-\lambda}, \quad f(2) = 0.5\lambda_1 f(1) + \lambda_2 f(0)$$
 и т. д.

В примере с данными (3.9) полученные формулы дают равенства:

$$f(0) = e^{-\lambda} = 0.60653, \quad f(1) = \lambda_1 f(0) = 0.151632,$$

$$f(2) = 0.5\lambda_1 f(1) = 0.018954, \quad f(3) = \frac{1}{3}\lambda_1 f(2) = 0.00158,$$

$$f(4) = 0.25\lambda_1 f(3) + \lambda_4 f(0) = 0.075915, \quad f(5) = \frac{1}{5}\lambda_1 f(4) + \frac{4}{5}f(1) + \lambda_5 f(0) = 0.094775.$$

Таким образом, если распределение исков дискретно и возможные значения исков целочисленны, то полученные рекуррентные формулы позволяют в еще большей степени упростить вычисление параметров распределения суммарного иска.

3.6. Аппроксимация нормальным распределением величины суммарного иска

До сих пор нормальная аппроксимация распределения суммарного иска использовалась нами только в моделях индивидуального иска. Для рассматриваемых моделей коллективного риска имеет место

Теорема 5 Если суммарный иск S имеет обобщенное пуассоновское или обобщенное отрицательное биномиальное распределение c параметрами λ или r,p соответственно и функцией распределения индивидуального иска P(x), то распределение случайной величины

$$Z = \frac{S - E[S]}{\sqrt{VarS}}$$

стремится к стандартному нормальному распределению при $\lambda \to \infty$ для обобщенного пуассоновского и при $r \to \infty$ для отрицательного биномиального распределения.

Доказательство. Если $\sigma_S = \sqrt{VarS},$ то производящая функция моментов случайной величины Z равна

$$M_Z(t) = exp(-\frac{tE[S]}{\sigma_S})M_S(\frac{t}{\sigma_S}),$$

и теорема будет доказана, если мы покажем, что для функции $\phi(t) = \ln M_Z(t)$ будет

$$\phi(t) \to t^2/2$$

при $\lambda \to \infty$ для обобщенного пуассоновского и при $r \to \infty$ для отрицательного биномиального распределения. Будем далее использовать разложение производящей функции

$$M_X(u) = 1 + p_1 u + 0.5 p_2 u^2 + o(u^2). (3.11)$$

Для обобщенного пуассоновского распределения из (3.2) имеем:

$$E[S] = \lambda p_1, \quad \sigma_S^2 = \lambda p_2,$$

поэтому, подставляя $u = t/\sigma_S$ в равенство (3.11), получим

$$\phi(t) = \lambda (M_X(t/\sigma_S) - 1) - tE[S]/\sigma_S =$$

$$\lambda \left(\frac{p_1 t}{\sqrt{\lambda p_2}} + \frac{1}{2} \frac{p_2 t^2}{\lambda p_2} + o(\frac{1}{\lambda}) \right) - \frac{t \lambda p_1}{\sqrt{\lambda p_2}} = \frac{1}{2} t^2 + o(1) \to \frac{1}{2} t^2 \quad \text{при} \quad \lambda \to \infty.$$

Для обобщенного отрицательного биномиального распределения из (3.4) следует:

$$E[S] = r(q/p)p_1, \quad \sigma_S^2 = r(q/p)p_2 + r(q^2/p^2)p_1^2,$$

поэтому из (3.11) получаем

$$\phi(t) = r \log \left[p / \left(1 - q \left(1 + \frac{tp_1}{\sigma_S} + \frac{t^2 p_2}{2\sigma_S^2} + o(1/r) \right) \right) \right] - tE[S] / \sigma_S =$$

$$\begin{split} r\log\left[1/\left(1-\frac{tqp_1}{p\sqrt{r(q/p)p_2+r(q^2/p^2)p_1^2}}-\frac{t^2qp_2}{2p^2(r(q/p)p_2+r(q^2/p^2)p_1^2)}-o(1/r)\right)\right] = \\ \frac{rtqp_1}{p\sqrt{r(q/p)p_2+r(q^2/p^2)p_1^2}}+\frac{rt^2qp_2}{2p(r(q/p)p_2+r(q^2/p^2)p_1^2)}+\\ \frac{rt^2q^2p_1^2}{2p^2(r(q/p)p_2+r(q^2/p^2)p_1^2)}+o(1)-\frac{rtqp_1}{p\sqrt{r(q/p)p_2+r(q^2/p^2)p_1^2}}=\\ \frac{qt^2}{2p^2}\frac{p_2p+p_1^2q}{(q/p)p_2+(q^2/p^2)p_1^2}+o(1)=\frac{t^2}{2}+o(1)\to\frac{t^2}{2}\quad\text{при}\quad r\to\infty. \end{split}$$

Обозначая, как и ранее, через $\phi(t)$ натуральный логарифм производящей функции моментов суммарного иска, для обобщенного распределения Пуассона будем иметь:

$$\phi(t) = \lambda(M_X(t) - 1), \quad \phi^{(k)}(t) = \lambda M_X^{(k)}(t), \quad k \ge 1,$$

отсюда и из разд. 2.2. следует, что для обобщенного пуассоновского распределения первые три центральных момента вычисляются достаточно просто:

$$E[S] = \phi'(0) = \lambda p_1, \quad VarS = \phi^{(2)}(0) = \lambda p_2, \quad E(S - E[S])^3 = \phi^{(3)}(0) = \lambda p_3. \quad (3.12)$$

Из теоремы 5 следует, что при больших значениях λ суммарный иск можно считать нормально распределенной случайной величиной со средним и дисперсией, равными соответственно λp_1 и λp_2 . На самом деле суммарный иск можно аппроксимировать не только нормальным распределением. Именно, пусть гамма-функция распределения с параметрами α, β есть

$$G(x:\alpha,\beta) = \int_0^x \frac{\beta^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-\beta t} dt,$$

тогда смещенная на x_0 гамма-функция распределения определяется как

$$H(x:\alpha,\beta,x_0)=G(x-x_0:\alpha,\beta).$$

Следует отметить, что введенная таким образом функция распределения является трехпараметрической. Если случайная величина Y имеет смещенное на x_0 гаммараспределение, то ее производящая функция моментов

$$M_Y(t) = e^{tx_0} \left(\frac{\beta}{\beta - t}\right)^{\alpha}$$

обусловливает вид функции $\phi_Y(t) = \ln M_Y(t)$:

$$\phi_Y(t) = tx_0 + \alpha \log \frac{\beta}{\beta - t}$$

Отсюда вытекает (см. разд. 2.2.), что

$$EY = x_0 + \frac{\alpha}{\beta}, \quad VarS = \frac{\alpha}{\beta^2}, \quad E(S - E[S])^3 = \frac{2\alpha}{\beta^3}.$$
 (3.13)

Считая теперь величину β бесконечно большой, получим

$$\phi_Y(t) = tx_0 + \frac{\alpha}{\beta}t + \frac{\alpha}{2}\frac{t^2}{\beta^2} + o(\alpha t^2/\beta^2) =$$

$$t(x_0 + \frac{\alpha}{\beta}) + \frac{t^2}{2} \frac{\alpha}{\beta^2} + o(\alpha t^2/\beta^2).$$

Из полученного равенства для функции $\phi_Y(t)$ непосредственно следует

Теорема 6 Если параметры α, β, x_0 смещенного гамма-распределения таковы, что $\alpha \to \infty, \quad \beta \to \infty, \quad , x_0 \to -\infty, \; npuчем$

$$x_0 + \frac{\alpha}{\beta} = a, \quad \frac{\alpha}{\beta^2} = \sigma^2,$$

то распределение $H(x:\alpha,\beta,x_0)$ сходится к $N(a,\sigma^2)$ — нормальному распределению с параметрами a,σ^2 .

Из этой теоремы следует, что если для обобщенного распределения Пуассона заданы моменты (3.12), то это распределение можно аппроксимировать смещенным гамма-распределением, определив параметры последнего из условий (3.13):

$$\lambda p_1 = x_0 + \frac{\alpha}{\beta}, \quad \lambda p_2 = \frac{\alpha}{\beta^2}, \quad \lambda p_3 = \frac{2\alpha}{\beta^3},$$

которые дают

$$\alpha = 4 \frac{\lambda p_2^3}{p_3^2}, \quad \beta = 2 \frac{p_2}{p_3}, \quad x_0 = \lambda p_1 - 2 \frac{\lambda p_2^2}{p_3}.$$

Найденные отсюда параметры α, β, x_0 удовлетворяют условиям теоремы 6 при $a=\lambda p_1, \quad \sigma^2=\lambda p_2, \quad \lambda\to\infty$. Для обобщенного отрицательного биномиального распределения имеет место другой факт, именно, справедлива

Теорема 7 Если члены последовательности случайных величин $\{S_k\}$ имеют обобщенное отрицательное биномиальное распределение с параметрами r, p(k) и функцией распределения индивидуального иска P(x), при этом отношение

$$q(k)/p(k) = kq/p, \quad k = 1, 2, \dots,$$

 $rde\ q=1-p\ nocmoянна,\ mo\ pacnpedenenue\ случайной\ величины$

$$Z_k = S_k / E[S]_k$$

стремится к распределению G(x:r,r) при $k\to\infty$.

Доказательство. Из (3.3) следует, что производящая функция моментов случайной величины $Z_k = S_k/E[S]_k$ равна

$$\left(\frac{p(k)}{1 - q(k)M_X(t/E[S]_k)}\right)^r.$$

Поскольку по условию теоремы $E[S]_k \to \infty$, то при этом

$$M_X(t/E[S]_k) = 1 + \frac{p_1}{E[S]_k}t + \frac{1}{2}\frac{p_2}{(E[S]_k)^2}t^2 + o(1/(E[S]_k)^2),$$

а отсюда

$$\begin{split} M_{Z_k}(t) &= \left(\frac{p(k)}{1 - q(k) - q(k)p_1t/E[S]_k - 0.5q(k)p_2(t/E[S]_k)^2 - o(1/(E[S]_k))^2}\right)^r = \\ &\qquad \left(1 - \frac{t}{r} - \frac{1}{2}\frac{p(k)}{q(k)}\frac{p_2t^2}{p_1^2r^2} - o(1/k^2)\right)^{-r} = \\ &\qquad \left(1 - \frac{t}{r} - \frac{1}{2}\frac{p}{qk}\frac{p_2t^2}{p_1^2r^2} - o(1/k^2)\right)^{-r} \rightarrow \left(1 - \frac{t}{r}\right)^{-r} = \left(\frac{r}{r - t}\right)^r \quad \text{при} \quad k \to \infty, \end{split}$$

последнее выражение, а именно $(r/(r-t))^r$, есть производящая функция распределения G(x:r,r).

Замечание. При больших номерах k производящая функция моментов S_k приближенно равна

$$\left(\frac{r}{r - tE[S]_k}\right)^r = \left(\frac{r}{r - tq(k)rp_1/p(k)}\right)^r = \left(\frac{u}{u - t}\right)^r, \quad \text{где} \quad u = p(k)/p_1q(k),$$

то есть распределение S_k с ростом k беконечно мало отличается от распределения G(x:r,u). Кроме того, при выполнении условий доказанной теоремы

$$Var(S_k/E[S]_k) = VarS_k/(E[S]_k)^2 = \frac{pp_2}{rkap_1^2} + \frac{1}{r} \to \frac{1}{r}$$
 при $k \to \infty$.

Рассмотрим пример. Пусть суммарный иск S имеет обобщенное пуассоновское распределение с параметром $\lambda=12$ и случайной величиной индивидуального иска, равномерно распределенной на интервале (0,1). Требуется оценить вероятность P(S<10) с помощью нормальной аппроксимации и с помощью аппроксимации смещенным гамма-распределением.

Сначала определим моменты случайной величины $X: EX=1/2, EX^2=1/3, EX^3=1/4.$ Отсюда

$$\lambda p_1 = 6, \quad \lambda p_2 = 4, \quad \lambda p_3 = 3.$$

Теперь из равенств

$$x_0 + \frac{\alpha}{\beta} = 6$$
, $\frac{\alpha}{\beta^2} = 4$, $\frac{2\alpha}{\beta^3} = 3$

определяем $\alpha = 28.444$, $\beta = 2.667$, $x_0 = -4.667$. Таким образом, суммарный иск S аппроксимируется распределением N(6,4) или распределением H(x:28.444,2.667,-4.667). Тогда для нормальной аппроксимации вероятность

$$P(S < 10) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{10} exp(-\frac{(x-6)^2}{8}) dx = \Phi(2) = 0.97725,$$

а для гамма-аппроксимации та же вероятность оценивается как

$$\int_0^{14.667} \frac{2.667^{28.444}}{\Gamma(28.44)} x^{27.444} e^{-2.667x} dx = 0.968156.$$

ЗАДАЧИ

1. Пусть случайная величина N имеет биномиальное распределение с параметрами m, p. Получить выражения для $E[S], VarS, M_S(t)$ через $m, p, p_1, p_2, M_X(t)$.

Решение. Поскольку

$$M_N(t) = \sum_{k=0}^m {m \choose k} p^k (1 - p^k) e^{tk} = (pe^t + q)^m,$$

то для функции $\phi_S(t) = \ln M_S(t)$ имеет место выражение

$$\phi_S(t) = m \ln(pM_X(t) + q);$$

беря две первые производные $\phi_S(t)$ в нуле, получим

$$E[S] = mpp_1, \quad VarS = mpp_2 - mp^2p_1^2.$$

2. Пусть случайная величина N принимает значения 0,1,2,и 3 с соответствующими вероятностями 1/2,1/3,1/8,1/24, а величина индивидуального иска X принимает значения 10,20,и 40 с соответствующими вероятностями 1/2,1/4,1/4. Требуется вычислить EN, VarN, EX, VarX, E[S], VarS.

Решение. Моменты величин N, X вычисляются непосредственно:

$$EN = 1/3 + 1/4 + 1/8 = 17/24$$
, $EN^2 = 1/3 + 1/2 + 9/24 = 29/24$,

$$VarN = 29/24 - (17/24)^2 = 407/576$$
, $EX = 20$, $EX^2 = 550$, $VarX = 550 - 400 = 150$.

Моменты случайной величины S вычислим, исходя из производящей функции моментов: поскольку

$$M_N(t) = 1/2 + e^t/3 + e^{2t}/8 + e^{3t}/24$$
, $M_X(t) = e^{10t}/2 + e^{20t}/4 + e^{40t}/4$, To
$$M_S(t) = 1/2 + M_X(t)/3 + M_X(t)^2/8 + M_X(t)^3/24$$

и теперь две первые производные в нуле функции $\phi(t) = \ln M_S(t)$ дают

 ${f 3.}$ Если суммарный иск S имеет обобщенное распределение Пуассона с параметром λ и дискретное распределение индивидуального иска

$$p(x) = -\frac{c^x}{x \ln(1-c)}, \quad x = 1, 2, \dots; c \in (0, 1),$$

то требуется показать, что S имеет отрицательное биномиальное распределение и найти параметры этого распределения.

Решение. Прежде всего производящая функция моментов

$$M_X(t) = \frac{\log(1 - ce^t)}{\log(1 - c)}$$

Следовательно, для функции $\phi_S(t) = \log M_S(t)$ справедливы равенства

$$\phi_S(t) = \lambda \left[\frac{\log(1 - ce^t)}{\log(1 - c)} \right] = \frac{\lambda}{\log(1 - c)} \ln\left(\frac{1 - ce^t}{1 - c}\right) = \frac{\lambda}{-\log(1 - c)} \ln\left(\frac{1 - c}{1 - ce^t}\right) = \ln\left(\frac{p}{1 - qe^t}\right)^r,$$

где параметры p,r равны соответственно $1-c,\frac{\lambda}{-\log{(1-c)}}.$ 4. Случайная величина N имеет пуассоновское распределение с параметром $\lambda.$ Требуется выразить вероятность P(N = n + 1) через P(N = n).

Решение. Пусть X- случайная величина, имеющая вырожденное распределение, то есть P(X=1)=1. Тогда случайная величина S=N имеет обобщенное пуассоновсое распределение с параметром λ и вырожденным распределением индивидуального иска p(1) = 1. Из соотношения 3.10 следует, что

$$f(n+1) = \sum_{i=1}^{\infty} i\lambda p_i f(n+1-i)/(n+1) = \lambda f(n)/(n+1).$$

5. Случайные величины N_1, N_2, N_3 независимы и имеют пуассоновское распределение, при этом $EN_i=i^2, \quad i=1,2,3.$ Какое распределение имеет сумма S= $-2N_1 + N_2 + 3N_3$?

Решение. Для произвольного набора коэффициентов k_1, k_2, k_3 из независимости случайных величин N_i следует, что производящая функция моментов суммы S= $\sum_{i=1}^{3} k_i N_i$ равна

$$M_S(t) = M_{k_1 N_1}(t) M_{k_2 N_2}(t) M_{k_2 N_2}(t),$$

при этом

$$M_{k_i N_i}(t) = exp(\lambda_i(e^{k_i t} - 1)),$$

в данной задаче $\lambda_i=i^2$. Обозначая $\sum \lambda_i$ через λ , а λ_i/λ через λ_i' , получим что

$$M_S(t) = exp(\lambda(\sum_{i=1}^{3} \lambda_i' e^{k_i t} - 1).$$

Отсюда следует, что S имеет обобщенное пуассоновское распределение с параметром λ и дискретным распределением величины иска

$$p(k_i) = \lambda_i', \quad i = 1, 2, 3.$$

Таким образом, полученное обобщенное пуассоновское распределение определяется параметром $\lambda = 14$ и распределением p(-2) = 1/14, p(1) = 2/7, p(3) = 9/14.

6. Для данного α определить β, x_0 из условия, что $H(x:\alpha,\beta,x_0)$ имеет нулевое среднее и единичную дисперсию. К какому распределению стремится полученное распределение при $\alpha \to \infty$?

Решение. Из (3.13) следует, что

$$x_0 + \alpha/\beta = 0$$
, $\alpha/\beta^2 = 1 \iff x_0 = -\sqrt{\alpha}$, $\beta = \sqrt{\alpha}$.

Производящая функция моментов распределения $H(x:\alpha,\sqrt{\alpha},-\sqrt{\alpha})$ равна

$$e^{-t\sqrt{\alpha}} \left(\frac{\sqrt{\alpha}}{\sqrt{\alpha} - t} \right)^{\alpha},$$

поэтому ее натуральный логарифм, равный

$$-t\sqrt{\alpha} - \alpha \log(1 - t/\sqrt{\alpha}) = -t\sqrt{\alpha} - \alpha(-t/\sqrt{\alpha} - 0.5t^2/\alpha + o(1/\alpha)) =$$
$$0.5t^2 + o(1) \to 0.5t^2 \quad \text{при} \quad \alpha \to \infty.$$

Следовательно, предельное распределение есть стандартное нормальное распределение.

4. Элементы теории разорения

До сих пор мы рассматривали свойства случайной величины общего иска. При этом никак не затрагивался вопрос о том, достаточно ли у страховщика средств для покрытия возникающих ущербов. Дело здесь в том, что, с одной стороны, эти средства могут взяться только из собранных премий, причем эти премии поступают регулярно в соответствии с заключенными страховыми договорами, а с другой предъявляемые иски поступают не одновременно, а в соответствии с происшедшими ущербами, причем последовательность возникновения последних представляет собой случайный процесс. Таким образом мы до сих пор не затрагивали вопрос об изменении общего иска во времени, о соотношении в каждый момент времени размера собственных средств страховщика и величины иска. В дальнейшем будем использовать понятие фонд собственных средств страховщика для обозначения суммы денег в рассматриваемый момент времени, сформировавшейся в результате поступления премий и выплат по искам. Для краткости фонд собственных средств страховщика будем именовать просто капиталом.

4.1. Изменение капитала как случайный процесс

Пусть суммарная величина премий, поступающих от страхователей за единицу времени, равна c, а начальное значение капитала равно u. Тогда, если в момент времени $t \ge 0$ поступает суммарный иск величины S(t), то значение капитала в момент времени t будет равно

$$U(t) = u + ct - S(t). \tag{4.1}$$

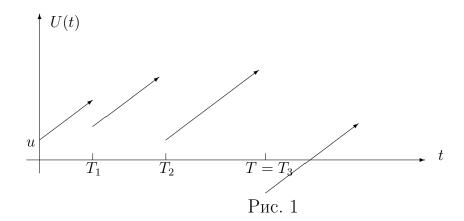
Если в какой-то момент времени t величина $u(t) \leq 0$, то будем говорить, что произошло разорение. При этом величина

$$T = \min\{t \ge 0 | U(t) < 0\}$$

называется моментом разорения. Если величина T равна ∞ , то считается, что разорения не происходит. Функция $\psi(u) = P(T < \infty)$ называется вероятностью разорения при начальном остатке u, а величина $\psi(u,t) = P(T < t)$ есть вероятность разорения до момента t при начальном значении фонда собственных средств, равном u. Случайный процесс S(t), как и ранее, представляется в виде

$$S(t) = X_1 + X_2 + \ldots + X_{N(t)},$$

при этом i-й иск величины X_i поступает в момент времени T_i . Зависимость u(t) можно представить себе из нижеследующего рисунка:



Случайный процесс S(t) описывается двумя характеристиками: случайным процессом числа исков N(t) и распределением каждого иска X_i . Относительно N(t) будем предполагать, что N(t) является пуассоновским процессом:

$$P(N(t+h) - N(t) = k)|N(s), s \le t) = \frac{\exp(-\lambda h)(\lambda h)^k}{k!}, k = 0, 1, 2, ...,$$

то есть данный процесс является стационарным с независимыми приращениями. При k=1 отсюда следует:

$$P(N(t+h) - N(t) = 1)|N(s), s \le t) = \exp(-\lambda h)\lambda h.$$

Если, кроме того, положить h = dt, то последнее равенство примет вид:

$$P(N(t+dt) - N(t) = 1)|N(s), s \le t) = \exp(-\lambda dt)\lambda dt \approx \lambda dt,$$

а W_{i+1} - случайное время ожидания i+1- го иска, равное $T_{i+1}-T_i$ имеет экспоненциальное распределение:

$$P(W_{i+1} > h | T_i = t, N(s), s \le t) =$$

$$P(N(t+h) - N(t) = 0 | T_i = t, N(s), s \le t) = \exp(-\lambda h).$$

Далее, если рассмотреть случайную величину момента предъявления k-го иска, обозначив ее как V_k , то ее функция распределения

$$F_k(t) = P(V_k < t) = \frac{\lambda^k}{(k-1)!} \int_0^t z^{k-1} \exp(-\lambda z) dz.$$

Действительно, если k = 1, то данное утверждение очевидно:

$$F_1(t) = 1 - \exp(-\lambda t).$$

Если предположить справедливость этого равенства для k-1, то в силу стационарности процесса N(t)

$$P(V_k < t) = \int_0^t P(V_1 < t - z) P(V_{k-1} \in (z, z + dz)) =$$

$$= \frac{\lambda^{k-1}}{(k-2)!} \int_0^t z^{k-2} \exp(-\lambda z) (1 - \exp(-\lambda(t-z))) dz =$$

$$\frac{\lambda^{k-1}}{(k-2)!} \int_0^t z^{k-2} \exp(-\lambda z) dz - \frac{\lambda^{k-1}}{(k-2)!} \int_0^t z^{k-2} \exp(-\lambda t) dz =$$

$$\frac{\lambda^{k-1}}{(k-2)!} \int_0^t z^{k-2} \exp(-\lambda z) dz - \frac{\exp(-\lambda t)(\lambda t)^{k-1}}{(k-1)!}$$

Последняя разность равна

$$\frac{\lambda^k}{(k-1)!} \int_0^t z^{k-1} \exp(-\lambda z) dz,$$

поскольку при интегрировании по частям

$$\frac{\lambda^k}{(k-1)!} \int_0^t z^{k-1} \exp(-\lambda z) dz = \frac{1}{(k-1)!} \int_0^{\lambda t} z^{k-1} \exp(-z) dz = \frac{1}{(k-1)!} z^{k-1} (-\exp(z)) \Big|_0^{\lambda t} + \frac{1}{(k-2)!} \int_0^{\lambda t} z^{k-2} \exp(-z) dz = \frac{\lambda^{k-1}}{(k-2)!} \int_0^t z^{k-2} \exp(-\lambda z) dz - \frac{\exp(-\lambda t)(\lambda t)^{k-1}}{(k-1)!}$$

Сумма $N(t) = N_1(t) + N_2(t) + \ldots + N_m(t)$ независимых процессов Пуассона $N_i(t), i = 1, 2, \ldots m$ является пуассоновским процессом с параметром $\lambda = \sum_{j=1}^m \lambda_j$; производящая функция $M_{N(t)}(r) = \exp(\lambda t(\exp(r) - 1))$.

Если случайные величины исков X_1, X_2, \ldots независимы и одинаково распределены, а N(t) является пуассоновским процессом, то процесс S(t) будем называть обобщенным пуассоновским процессом, определяемым параметром λ и функцией распределения P(x).

Для обобщенного пуассоновского процесса вероятность

$$P(S(y+t) - S(y) \le x) = \sum_{k=0}^{\infty} \frac{\exp(-\lambda t)(\lambda t)^k}{k!} P^{*k}(x).$$

Полагая y = 0, отсюда получаем, что

$$E[S(t)] = \lambda t p_1, \quad Var[S(t)] = \lambda t p_2, \quad M_{S(t)}(r) = \exp(\lambda t (M_X(r) - 1)).$$
 (4.2)

4.2. Оценка вероятности разорения для случая непрерывного времени

Будем оценивать величину $\psi(u)$ для величины (4.1). Предположим, что для $M_X(t)$ - производящей функции моментов случайной величины индивидуального иска можно указать такие значения $\gamma, \delta > 0$, для которых

$$M_X''(t) > \delta > 0$$
 если $t > \gamma$. (4.3)

Данное предположение выполнено, если, например, случайные величины X_i имеют гамма-распределение. Далее, будем считать, что величина премии c равна $\lambda(1+\theta)p_1, \quad \theta-$ как и ранее, относительная безопасная нагрузка. Рассмотрим уравнение

$$\lambda + cr = \lambda M_X(r) \tag{4.4}$$

Записывая его в виде

$$(1+\theta)p_1r = M_X(r) - 1,$$

сразу видим, что r=0 является решением. Кроме того, у функции

$$f(r) = (1 + \theta)p_1r - M_X(r) + 1$$

производная $f'(0) = \theta p_1 > 0$, а при достаточно больших значениях r условие (4.3) означает, что f(r) < 0. Следовательно, уравнение (4.4) имеет положительный корень, который обозначается как R и называется $\kappa o = \phi \phi u u e n mon nonpae n monpae n$

Рассмотрим пример. Пусть индивидуальные иски имеют экспоненциальное распределение с параметром β . Требуется определить величину R. Поскольку в данном случае функция $M_X(r) = \beta/(\beta - r)$, то уравнение (4.4) принимает вид

$$1 + (1 + \theta)r/\beta = \beta/(\beta - r),$$

откуда коэффициент $R = \theta \beta/(1+\theta)$ получается как решение квадратного уравнения.

Для оценки сверху вероятности разорения $\psi(u)$ имеет место

Теорема 8 Для любого $u \ge 0$ вероятность разорения

$$\psi(u) = \frac{e^{-Ru}}{E[e^{-RU(T)}|T < \infty]}.$$

Доказательство. Для произвольных t > 0, r > 0

$$E[e^{-rU(t)}] = E[e^{-rU(t)}|T \le t]P(T \le t) + E[e^{-rU(t)}|T > t]P(T > t),$$

при этом левая часть этого неравенства вследствие (4.1,4.2) равна

$$M_{U(t)}(-r) = e^{-ru-rct}e^{\lambda t(M_X(r)-1)}.$$

Представляя U(t) в виде

$$U(t) = U(T) + U(t) - U(T) = U(T) + c(t - T) - [S(t) - S(T)]$$

и учитывая, что разность S(t)-S(T) является обобщенным пуассоновским процессом с параметром $\lambda(t-T)$ и функцией распределения индивидуального иска P(x), отсюда получим:

$$e^{-ru-rct}e^{\lambda t(M_X(r)-1)} =$$

$$E[e^{-rU(T)}e^{-rc(t-T)+\lambda(t-T)(M_X(r)-1)}|T \le t]P(T \le t) + E[e^{-rU(t)}|T > t]P(T > t)$$

Выбирая в последнем равенстве значение r = R, из (4.4) получим

$$e^{-Ru} = E[e^{-RU(T)}|T \le t]P(T \le t) + E[e^{-RU(t)}|T > t]P(T > t)$$
(4.5)

Теперь покажем, что второе слагаемое в правой части (4.5) беконечно мало при $t \to \infty$. Для этого обозначим $\theta \lambda p_1 = c - \lambda p_1$ через α , а $\sqrt{\lambda p_2}$ через β , тогда из (4.1, 4.2) получаем

$$E[U(t)] = u + ct - \lambda t p_1 = u + \alpha t, \quad Var[U(t)] = Var[S(t)] = \beta^2 t.$$

Обозначим далее через A событие, состоящее в том, что $T>t, \quad 0 \leq U(t) \leq u+\alpha t-\beta t^{2/3},$ а событие B включает в себе те исходы, при которых $T>t, \quad U(t)>u+\alpha t-\beta t^{2/3}.$ Поскольку $R>0, \quad U(t)>0$ при t< T, то $e^{-RU(t)}<1,$ следовательно,

$$E[e^{-RU(t)}|T>t]P(T>t) =$$

$$E[e^{-RU(t)}|A]P(A) + E[e^{-RU(t)}|B]P(B) < P(A) + e^{-R(u+\alpha t - \beta t^{2/3})}.$$

Из неравенства Чебышева вероятность

$$P(A) = P(U(t) - u - \alpha t \le -\beta t^{2/3}) = P(U(t) - E[U(t)] \le -\sqrt{Var[U(t)]}t^{1/6}) \le t^{-1/3},$$

то есть является бесконечно малой, произведение $R(u+\alpha t-\beta t^{2/3})$ - бесконечно большим. Следовательно,

$$E[e^{-RU(t)}|T>t]P(T>t) \to 0$$
 при $t\to\infty.$

Поэтому из (4.5) вытекает

$$e^{-Ru} = E[e^{-RU(T)}|T < \infty]P(T < \infty). \quad \blacksquare$$

Замечание 1. Поскольку U(T) < 0, то $E[e^{-RU(T)}|T < \infty] > 1$, следовательно, вероятность разорения

 $\psi(u) < e^{-Ru}.$

Замечание 2. Если $\theta \to 0$, то коэффициент поправки $R \to 0$, поэтому если при назначении премии безопасная нагрузка отсутсвует, то разорение будет иметь место почти наверное.

Рассмотрим пример, когда индивидуальные иски имеют экспоненциальное распределение. Для этого нужно определить характер условного распределения случайной величины U(T) при условии $T < \infty$. С этой целью для произвольного x < 0 найдем условную вероятность $P(U(T) < x | T < \infty)$. Обозначим событие, состоящее в том, что U(v-0) = z, T = v, $X_1 > z$ через C(v,z), а событие, состоящее в том, что $X_1 > z - x$ обозначим через B(v,z). Теперь, поскольку условная вероятность

$$P(B(v,z)|C(v,z)) = (1 - \int_{-x+z}^{\infty} \beta e^{-\beta t} dt) / (1 - \int_{z}^{\infty} \beta e^{-\beta t} dt) = e^{-\beta(-x+z)} / e^{-\beta z} = e^{\beta x}$$

не зависит от v,z, то $P(U(T) < x | T < \infty) = e^{\beta x}.$ Отсюда следует, что

$$E[e^{-RU(T)}|T < \infty] = \int_{-\infty}^{0} e^{-Rx} \beta e^{\beta x} dx = \beta/(\beta - R).$$

Подставляя полученное в предыдущем примере выражение для R, отсюда заключаем

 $\psi(u) = \frac{e^{-Ru}(\beta - R)}{\beta} = \frac{e^{-\beta u\theta/(1+\theta)}}{1+\theta}.$

4.3. Оценка вероятности разорения для случая дискретного времени

В реальности премии поступают не непрерывным образом, а по месяцам, кварталам, годам и в соответствии с этими целочисленными календарными датами проходит отчетность и подведение итогов работы страховой организации. Поэтому наряду с рассмотренной непрерывной моделью рассмотрим теперь дискретную модель изменения капитала

$$U_n = u + nc - S_n, (4.6)$$

где n- номер рассматриваемого временного отрезка, c- размер полученных за этот отрезок премий, S_n- суммарный иск за весь рассматриваемый период из n отрезков:

$$S_n = W_1 + W_2 + \ldots + W_n$$

 W_i — суммарный иск за i—й отрезок. Величины W_i предполагаются независимыми и одинаково распределенными, со средним $\mu = EW < c$. Обозначим по аналогии с непрерывным случаем момент разорения как

$$\tilde{T} = \min \{ n : U_n < 0 \},$$

а вероятность разорения

$$\tilde{\psi}(u) = P(\tilde{T} < \infty).$$

Уравнение для определения коэффициента поправки $-\tilde{R}$ в дискретном случае будет выглядеть как

$$e^{-cr}M_W(r) = 1.$$
 (4.7)

Рассматривая функцию $f(r) = cr - \log M_W(r)$, сразу видим, что r = 0 является решением данного уравнения. Как и в непрерывном случае, нас интересует положительное решение данного уравнения. Заметим, что значение производной в нуле

$$f'(0) = c - \mu = (1 + \theta)\mu - \mu = \theta\mu > 0,$$

то есть f(r)>0 в окрестности нуля. Предположим далее, что функция $\phi(r)=\log M_W(r)$ сильно вогнута, тогда при некотором $\delta>0$ справедливо неравенство

$$\phi^{''}(r) > \delta$$

при всех r > 0 и данное предположение гарантирует существования положительного коэффициента R— решения (4.7).

Рассмотрим пример. Пусть случайная величина W имеет распределение $N(\mu, \sigma^2)$. Найдем коэффициент поправки R. Для этого рассмотрим уравнение

$$cr = \mu r + 0.5\sigma^2 r^2,$$

решая которое, найдем $R = 2(c - \mu)/\sigma^2$.

Докажем теперь дискретный аналог теоремы (8):

Теорема 9 Для любого $u \ge 0$ вероятность разорения

$$\tilde{\psi}(u) = \frac{e^{-\tilde{R}u}}{E[e^{-\tilde{R}U_{\tilde{T}}}|\tilde{T} < \infty]}.$$

Доказательство. Аналогично непрерывному случаю, для произвольных $n \in \{1, 2, \dots\}, r > 0$ величина

$$E[e^{-rU_n}] = E[e^{-rU_n}|\tilde{T} \le n]P(\tilde{T} \le n) + E[e^{-rU_n}|\tilde{T} > n]P(\tilde{T} > n),$$

левая часть этого неравенства из определения U_n равна

$$e^{-ru-rcn}M_W(r)^n$$
.

Выбирая теперь в качестве $r = \tilde{R}$, из (4.7) получаем, что $E[e^{-rU_n}] = e^{-\tilde{R}u}$. В остальном доказательство данной теоремы повторяет доказательство теоремы 9 с заменой t на n.

Замечание. Записывая уравнение (4.7) в виде $cr=\ln M_W(r)$ и разлагая функцию $\phi(r)=\log M_W(r)$ по формуле Маклорена, получим

$$cr = \mu r + 0.5\sigma^2 r^2 + \dots,$$

откуда следует, что $\tilde{R}\cong 2(c-\mu)/\sigma^2$. В частности, данное равенство справедливо как точное, если случайная величина является нормально распределенной. В этом случае $\phi''(r)=\sigma^2$ при всех r>0. Если же случайная величина W имеет обобщенное распределение, то в таком случае

$$\mu = EW = p_1 EN, \ \sigma^2 = VarW = (p_2 - p_1^2)EN + p_1^2 VarN,$$

откуда

$$\tilde{R} \cong \frac{2\theta p_1 EN}{(p_2 - p_1^2) EN + p_1^2 Var N}.$$

Пример. Пусть W имеет обобщенное пуассоновское распределение с параметром λ . Тогда $EN = VarN = \lambda$, откуда $\tilde{R} \cong 2\theta p_1/p_2$.

Пусть теперь W имеет обобщенное отрицательное биномиальное распределение с параметрами r,p, оценим и в этом случае величину \tilde{R} . . Напомним, что здесь $W=X_1+X_2+\ldots+X_N$, случайная величина N такова, что

$$P(N = k) = r(r+1)\dots(r+n-1)/k!q^kp^r, M_N(t) = (p/(1-qe^t))^r,$$

 $EN=rq/p,\ VarN=rq/p^2,\ \mu=EW=rp_1q/p,\ \sigma^2=(p_2-p_1^2)rq/p+p_1^2rq/p^2,$ следовательно,

$$\tilde{R} \cong \frac{2\theta p_1}{p_2 + p_1^2(1/p - 1)}.$$

Рассмотрим более общий случай, когда случайные величины W_i не явлются независимыми. Именно, рассмотрим авторегрессионную модель

$$W_i = Y_i + aW_{i-1}, i = 1, 2, \dots, W_0 = w;$$

здесь случайные величины Y_i независимы и одинаково распределены,

$$a \in (-1,1), EY < (1-a)c,$$

случай независимых W_i получается при a=0. Определим момент разорения \hat{T} как $\hat{T}=\min\{n|U_n<(a/(1-a))W_n.\}$ Здесь вероятность разорения зависит уже от двух параметров:

$$\tilde{\psi}(u, w) = P(\hat{T} < \infty).$$

Поскольку

$$W_n = Y_n + aY_{n-1} + \dots + a^{n-1}Y_1 + a^n w,$$

то

$$EW_n = (1 + a + a^2 + \dots a^{n-1})EY + a^n w = \frac{1 - a^n}{1 - a}EY + a^n w;$$

кроме того,

$$S_n = Y_n + (1+a)Y_{n-1} + \dots + (1+a+a^2 + \dots + a^n)Y_1 + (a+a^2 + \dots + a^n)w = Y_n + \frac{1-a^2}{1-a}Y_{n-1} + \dots + \frac{1-a^n}{1-a}Y_1 + a\frac{1-a^n}{1-a}w;$$

$$E[S]_n = EY[1 + \frac{1-a^2}{1-a} + \dots + \frac{1-a^n}{1-a}] + a\frac{1-a^n}{1-a}w.$$

Коэффициент поправки \hat{R} для рассматриваемого случая будем определять как положительное решение уравнения

$$e^{-cr}M_{Y/(1-a)}(r) = 1.$$

Наряду с последовательностью U_n будем рассматривать случайные величины

$$\hat{U}_n = U_n - \frac{a}{1 - a} W_n.$$

Здесь полагается

$$\hat{U}_0 = \hat{u} = u - \frac{a}{1 - a}w.$$

Справедлива

Теорема 10 Для любого $\hat{u} \geq 0$ вероятность разорения

$$\tilde{\psi}(u,w) = \frac{e^{-\hat{R}\hat{u}}}{E[e^{-\hat{R}\hat{U}_{\hat{T}}}|\hat{T} < \infty]}.$$

Доказательство. Для последовательности $\{\hat{U}_n\}$ получим рекуррентную формулу

$$\hat{U}_i = U_i - \frac{a}{1-a}W_i = U_{i-1} + c - W_i - \frac{a}{1-a}W_i = U_{i-1} + c - \frac{1}{1-a}W_i = U_{i-1} + c - \frac{1}{1-a}(Y_i + aW_{i-1}) = \hat{U}_{i-1} + c - \frac{1}{1-a}Y_i,$$

из которой следует, что

$$E\hat{U}_i = \hat{u} + ci - iEY/(1-a) = \hat{u} + ic(1-k), Var\hat{U}_i = i^2 VarY/[(1-a)^2], i = 1, 2, ...$$

где $k=EY/(c(1-a))\in (0,1);$ если обозначить $\alpha=c(1-k),$ $\beta=VarY/[(1-a)^2],$ то получим

$$E\hat{U}_i = \hat{u} + \alpha i, \quad Var\hat{U}_i = i^2\beta \tag{4.8}$$

кроме того, в силу независимости случайных величин Y_i

$$E[e^{-\hat{R}\hat{U}_n}] = e^{-\hat{R}\hat{u}}E[e^{-\hat{R}(\hat{U}_n - \hat{u})}] = e^{-\hat{R}\hat{u}}\prod_{i=0}^{n-1}E[e^{-\hat{R}(\hat{U}_{i+1} - \hat{U}_i)}] =$$

$$e^{-\hat{R}\hat{u}}(E[exp(-\hat{R}(c-\frac{1}{1-a}Y)])^n = e^{-\hat{R}\hat{u}}(e^{-\hat{R}c}M_{Y/(1-a)}(\hat{R}))^n = e^{-\hat{R}\hat{u}}.$$

Кроме того, при любом $i \in \{1, 2, \dots, n-1\}$

$$E[e^{-\hat{R}\hat{U}_n}|\hat{T}=i] = E[e^{-\hat{R}\hat{U}_i}|\hat{T}=i] \prod_{k=i}^{n-1} E[e^{-\hat{R}(\hat{U}_{k+1}-\hat{U}_k)}|\hat{T}=i] = E[e^{-\hat{R}\hat{U}_i}|\hat{T}=i]$$

Отсюда равенство

$$E[e^{-\hat{R}\hat{U}_n}] = \sum_{i=1}^n E[e^{-\hat{R}\hat{U}_n}|\hat{T} = i]P(\hat{T} = i) + E[e^{-\hat{R}\hat{U}_n}|\hat{T} > n]P(\hat{T} > n)$$

принимает вид

$$e^{-\hat{R}\hat{u}} = \sum_{i=1}^{n} E[e^{-\hat{R}\hat{U}_i}|\hat{T} = i]P(\hat{T} = i) + E[e^{-\hat{R}\hat{U}_n}|\hat{T} > n]P(\hat{T} > n)$$
(4.9)

Если $n \to \infty$, то первое слагаемое в правой части (4.9) будет равно

$$E[e^{-\hat{R}\hat{U}_{\hat{T}}}|\hat{T}<\infty]P(\hat{T}<\infty).$$

Теперь осталось показать, что второе слагаемое в правой части (4.9) бесконечно мало при $n \to \infty$. Для этого рассмотрим события

$$A_n: \hat{T} > n, \, \hat{U}_n < \hat{u} + \alpha n - \beta n^{2/3},$$

$$B_n: \hat{T} > n, \ \hat{U}_n > \hat{u} + \alpha n - \beta n^{2/3},$$

Тогда второе слагаемое в правой части (4.9) оценивается как

$$E[e^{-\hat{R}\hat{U}_n}|A_n]P(A_n) + E[e^{-\hat{R}\hat{U}_n}|B_n]P(B_n) < P(A_n) + E[e^{-\hat{R}\hat{U}_n}|B_n] < P(A_n) + e^{-\hat{R}(\hat{u} + \alpha n - \beta n^{2/3})}.$$

В полученном неравенстве слагаемое P(A) оценивается с помощью неравенства Чебышева, исходя из (4.8)

$$P(A_n) = P(\hat{U}_n - \hat{u} - \alpha n < -\beta n^{2/3}) = P(\hat{U}_n - E\hat{U}_n < -\frac{\beta n^{2/3}}{\beta n^2} Var\hat{U}_n) < n^{-2/3}.$$

Отсюда $P(A_n) \to 0$ при $n \to \infty$. Поскольку $\alpha, \beta > 0$, то и $e^{-\hat{R}(\hat{u}+\alpha n-\beta n^{2/3})} \to 0$. Вамечание. Если рассмотреть величины \hat{U}_n в более общем виде $\hat{U}_n = U_n - tW_n$, то величины $\Delta \hat{U}_n = \hat{U}_{n+1} - \hat{U}_n$ не зависят от $W_i, i = 1, 2, \dots, n$ в том и только в том случае, когда t = a/(1-a). Действительно, $\Delta \hat{U}_n = \Delta U_n - t\Delta W_n$, при этом $\Delta U_n = c - W_{n+1} = c - Y_{n+1} - aW_n$, а $\Delta W_n = Y_{n+1} - (1-a)W_n$, откуда $\Delta \hat{U}_n = c - (1-t)Y_{n+1} + (t(1-a)-a)W_n$. Отсюда видно, что $\Delta \hat{U}_n = c - (1-t)Y_{n+1} \iff t = a/(1-a)$.

4.4. Величина капитала на момент разорения. Характеристики максимального суммарного ущерба

В предыдущих разделах были получены оценки вероятности разорения. Основной целью настоящего раздела является описание характера распределения фонда собственных средств. Кроме того, будут получены соотношения, имеющие и самостоятельный интерес в описании поведения случайного процесса изменения величины фонда. Здесь мы вернемся к непрерывному случаю процесса изменения капитала U(t), где суммарный иск S(t) является обобщенным пуассоновским процессом (4.1). Обозначим момент первого понижения капитала до уровня, меньшего начального значения u через $\hat{t} = min\{t \geq 0 | U(t) < u\}$. Справедлива

Теорема 11 Вероятность события, состоящего в том, что величина капитала при его первом понижении до уровня меньшего начальной величины и примет значение на интервале (u - y - dy, u - y), где y > 0 произвольно, равна

$$\frac{\lambda}{c} (1 - P(y)) dy.$$

Доказательство. Фактически здесь треуется показать, что

$$P(U(\hat{t}) \in (u - y - dy, u - y), \, \hat{t} < \infty) = \frac{\lambda}{c} (1 - P(y)) \, dy.$$

Поскольку при u=0 моменты \hat{t} и T совпадают, то в силу аддитивности процесса U(t) для доказательства теоремы достаточно показать, что

$$P(U(T) < -h, T < \infty) = (P(U(T) < -h|T < \infty)\psi(0) = \frac{\lambda}{c} \int_{h}^{\infty} (1 - P(y)) dy.$$

Пусть w(x) - неотрицательная ограниченная функция, определенная на множестве x < 0, для нее определим функцию

$$\psi(u, w) = E[w(U(T))|T < \infty]\psi(u)$$

переменного u. Для пуассоновского процесса вероятность возникновения иска на отрезке [0,dt] равна λdt , поэтому если T_1 — момент возникновения первого иска, то из формулы полной вероятности

$$\psi(u,w) = E[w(U(T))|T < \infty, T_1 > dt]P(T < \infty, T_1 > dt) +$$

$$E[w(U(T))|T < \infty, T_1 < dt, X_1 \le u]P(T < \infty, T_1 < dt, X_1 \le u) +$$

$$E[w(U(T))|T < \infty, T_1 < dt, X_1 > u]P(T < \infty, T_1 < dt, X_1 > u) =$$

$$(1 - \lambda dt)\psi(u + cdt, w) + \lambda dt \int_0^u \psi(u - x, w)p(x)dx + \lambda dt \int_u^\infty w(u - x)p(x)dx,$$

поскольку условия $T < \infty, T_1 < dt, X_1 > u$ означают, что момент разорения $T = T_1$ находится на интервале (0, dt) и следовательно

$$E[w(U(T))|T < \infty, T_1 < dt, X_1 > u]P(T < \infty, T_1 < dt, X_1 > u) =$$

$$E[w(u - X_1)|T = T_1 < dt]P(T_1 < dt)$$

Если L-оценка для значений функции w, то из равенства для $\psi(u,w)$ получаем, что

$$|\psi(u+c\Delta t, w) - \psi(u, w)| \le 3L\Delta t \Rightarrow \psi(u+cdt, w) = \psi(u, w).$$

Следовательно, существует производная по u функции $\psi(u,w)$:

$$\psi'(u,w) = \frac{\psi(u+cdt,w) - \psi(u,w)}{cdt} = \frac{\lambda}{c} \left(\psi(u,w) - \int_0^u \psi(u-x,w) p(x) dx - \int_x^\infty w(u-x) p(x) dx \right).$$

Поскольку при замене переменных $(x,u) \to (x,y): x=x, y=u-x$ треугольник $x \in [0,u], u \in [0,z],$ переходит в треугольник $(x,y) \ge 0, x+y \in [0,z],$ то интеграл

$$\int_0^z \int_0^u \psi(u - x, w) p(x) dx du = \int_0^z \int_0^{z - y} \psi(y, w) p(x) dx dy = \int_0^z \psi(y, w) P(z - y) dy,$$

а при замене $(x,u) \to (x,y): x=x, y=x-u$ область $x \ge u, u \in [0,z]$ переходит в область $x \in [y,y+z], y \ge 0$, то интеграл

$$\int_0^z \int_u^\infty w(u-x)p(x)dxdu = \int_0^\infty \int_y^{y+z} w(-y)p(x)dxdy =$$
$$\int_0^\infty w(-y)[P(y+z) - P(y)]dy,$$

то, интегрируя $\psi'(u,w)$ по переменной u от 0 до z, получаем

$$\psi(z, w) - \psi(0, w) = \frac{\lambda}{c} \int_0^z \psi(y, w) [1 - P(z - y)] dy - \frac{\lambda}{c} \int_0^\infty w(-y) [P(y + z) - P(y)] dy.$$

Устремляя здесь z к бесконечности и учитывая, что $\psi(\infty, w) = 0, P(\infty) = 1$, получаем равенство

$$\psi(0, w) = \frac{\lambda}{c} \int_0^\infty w(-y)[1 - P(y)]dy.$$

Далее, учитывая, что при выборе $w = w_h$, где

$$w_h(x) = \begin{cases} 1, & \text{если} & x < -h, \\ 0, & \text{если} & -h \le x \le 0, \end{cases}$$

величина

$$\psi(0, w_h) = P(U(T) < -h|T < \infty)\psi(0) =$$

$$= \frac{\lambda}{c} \int_0^\infty w_h(-y)[1 - P(y)]dy = \frac{\lambda}{c} \int_h^\infty [1 - P(y)]dy,$$

получаем, что вероятность

$$P(U(T) \in (-h - dh, -h)|T < \infty)\psi(0) = \frac{\lambda}{c}(1 - P(h))dh.$$

Замечание. Из доказанного следует, что вероятность того, что капитал когдалибо опустится ниже своего начального значения u, равна

$$\frac{\lambda}{c} \int_0^\infty (1 - P(y)) dy = \frac{1}{(1 + \theta)p_1} \int_0^\infty (1 - P(y)) dy = \frac{1}{(1 + \theta)},$$

поскольку $\int_0^\infty (1-P(y))dy=p_1$, что следует при d=0 из леммы на с. 9. Следовательно, величина

$$\psi(0) = \frac{1}{(1+\theta)}.$$

Таким образом $P(u-U(t)>0)=\psi(0)=1/(1+\theta)$. Рассмотрим далее множество

$$\overline{T} = \{t > 0 \mid u - U(t) > 0\}.$$

Из вида функции U(t) множество \overline{T} представляется в виде

$$\overline{T} = [\overline{t}_1, \overline{v}_1) \cup [\overline{t}_2, \overline{v}_2) \cup \dots,$$

где \bar{t}_i, \bar{v}_i — некоторые положительные моменты времени, причем

$$P(\bar{t}_1 < \infty) = \psi(0).$$

Определим случайную величину L_1 , как разность $u-U(\bar{t}_1)$, при условии, что момент \bar{t}_1 конечен. Тогда из доказанной теоремы следует равенство

$$P(y < u - U(\bar{t}) \le y + dy | \bar{t}_1 < \infty) =$$

$$P(u - y - dy \le U(\overline{t}) < u - y|\overline{t}_1 < \infty) =$$

$$= \frac{\lambda(1 - P(y))dy}{cP(\overline{t}_1 < \infty)} = \frac{\lambda(1 - P(y))dy}{c\psi(0)}.$$

Следовательно, плотность распределения случайной величины L_1 , равна

$$\frac{\lambda}{c\psi(0)}(1 - P(y)) = \frac{1 - P(y)}{p_1}.$$

Соответствующая производящая функция моментов есть

$$M_{L_1}(r) = \frac{1}{p_1} \int_0^\infty \exp(ry) (1 - P(y)) dy = \frac{1}{p_1} \left(\frac{\exp(ry)}{r} (1 - P(y)) \Big|_0^\infty + \frac{1}{r} \int_0^\infty \exp(ry) p(y) dy \right).$$

Поскольку из условия существования $M_X(r)$ следует, что

$$\exp(rA)(1 - P(A)) = \exp(rA) \int_A^\infty p(y)dy < \int_A^\infty \exp(ry)p(y)dy \to 0$$

при $A \to \infty$, то отсюда

$$M_{L_1}(r) = \frac{M_X(r) - 1}{p_1 r}, \ r > 0, \ M_{L_1}(0) = 1$$
 (4.10)

Пример 4.7. Пусть индивидуальные иски имеют экспоненциальное распределение с параметром β . Требуется определить вид распределения случайной величины L_1 .

Решение. Искомое распределение получим из равенства

$$1 - P(y) = e^{-\beta y}, y > 0,$$

из которого плотность

$$\frac{1 - P(y)}{p_1} = \beta e^{-\beta y}.$$

Полученное равенство означает, что случайная величина L_1 имеет то же распределение, что и индивидуальные иски. Производящая функция случайной величины L_1 , напомним, есть $\beta/(\beta-r)$.

Рассмотрим новое понятие - случайную величину *максимального ущерба*, определяемую как

$$L = \max\{S(t) - ct, \ t \ge 0\},\$$

эта случайная величина неотрицательна, поскольку $L \ge S(0) - c0 = 0$. Для получения функции распределения L используем функцию $\psi(u)$:

$$P(L \le u) = P(S(t) - ct \le u)$$
 при всех $t \ge 0$ = $= P(U(t) \ge 0)$ при всех $t \ge 0$ = $= 1 - \psi(u)$.

В частности, $P(L \le 0) = P(L = 0) = 1 - \psi(0)$. Теперь получим выражения для производящей функции моментов случайной величины L.

Теорема 12 Для любого r < R

$$M_L(r) = \frac{\theta p_1 r}{1 + (1 + \theta)p_1 r - M_X(r)}$$

Доказательство. Рассмотрим те моменты предъявления исков t_i^r , в которые функция S(t)-ct принимает свои рекордные значения:

$$S(t_i^r) - ct_i^r > L_i^r = max\{S(t) - ct, t \in [0, t_i^r)\}.$$

Поскольку наш обобщенный пуассоновский процесс является стационарным с независимыми приращениями, то для каждого номера i вероятность того, что разность S(t)-ct превзойдет достигнутое в t_i^r значение, равна $\psi(0)$. Обозначим разность $S(t_i^r)-ct_i^r-L_i^r$ через L_i . Тогда случайная величина L равна

$$L = L_1 + L_2 + \ldots + L_N,$$

Здесь L_i , $i=1,\ldots,N$ - независимые одинаково распределенные случайные величины, распределение L_1 ранее было получено, N - количество моментов, в которых разность S(t)-ct принимает рекордные значения. Покажем, что случайная величина N имеет геометрическое распределение:

$$P(N=n) = (1 - \psi(0))(\psi(0))^n = \theta\left(\frac{1}{1+\theta}\right)^{n+1}, n = 0, 1, 2, \dots$$

Очевидно, что $P(N=0)=1-\psi(0)$. Далее, событие $\{N=1\}$ означает, что в момент времени $t_1<\infty$ разность S(t)-ct положительна, а при всех $t>t_1$ она неположительна. Вероятность такого события равна $\psi(0)(1-\psi(0))$. Аналогично рассуждая, получаем выражение для вероятности для произвольного n.

Производящая функция моментов для N есть

$$M_N(r) = \frac{\theta}{1 + \theta - e^r}, r < \ln(1 + \theta).$$

Тогда из (4.10) следует, что если r < R, то

$$M_L(r) = M_N(\ln M_{L_1}(r)) = \frac{\theta}{1 + \theta - M_{L_1}(r)} = \frac{\theta p_1 r}{1 + (1 + \theta)p_1 r - M_X(r)},$$

при этом, если $r \to R$, то $M_L(r) \to \infty$.

Поскольку разность $1-\psi(u)$ является функцией распределения случайной величины L, то

$$M_L(r) = E[e^{rL}] = e^{r \cdot 0} P(L=0) + \int_0^\infty e^{ru} d(1 - \psi(u)) =$$

$$1 - \psi(0) - \int_0^\infty e^{ru} \psi'(u) du = \frac{\theta}{1 + \theta} - \int_0^\infty e^{ru} \psi'(u) du,$$

поэтому из доказанной теоремы следует, что

$$-\int_0^\infty e^{ru}\psi'(u)du = \frac{1}{1+\theta} \frac{\theta(M_X(r)-1)}{1+(1+\theta)p_1r - M_X(r)}$$
(4.11)

Полученная формула дает возможность определять аналитическое выражение функции $\psi(u)$ в некоторых случаях. Именно, справедлива

Теорема 13 Если распределение случайной величины индивидуального иска является смесью п экспоненциальных распределений, т.е. плотность

$$p(x) = \sum_{i=1}^{n} A_i \beta_i e^{-\beta_i x}, \quad x > 0, A_1 + A_2 + \dots + A_n = 1, A_i > 0, i = 1, 2, \dots, n,$$

то вероятность $\psi(u)$ представляется в виде

$$\psi(u) = \sum_{i=1}^{n} c_i e^{-r_i u},$$

где c_i, r_i — некоторые коэффициенты.

Доказательство. Будем считать, что $0 < \beta_1 < \beta_2 < \ldots < \beta_n$. Из вида распределения иска X следует, что производящая функция

$$M_X(r) = \sum_{i=1}^n A_i \frac{\beta_i}{\beta_i - r}, \quad r < \beta_1,$$

отсюда для указанных r разность

$$M_X(r) - 1 = \sum_{i=1}^n A_i (\frac{\beta_i}{\beta_i - r} - 1) = r \sum_{i=1}^n \frac{A_i}{\beta_i - r}.$$

Следовательно, правая часть в уравнении (4.11) равна

$$\frac{\theta}{1+\theta} \frac{\sum_{i=1}^{n} (A_i)/(\beta_i - r)}{(1+\theta)p_1 - \sum_{i=1}^{n} (A_i)/(\beta_i - r)} = \frac{\theta}{1+\theta} \frac{\sum_{i=1}^{n} A_i \prod_{j \neq i} (\beta_j - r)}{(1+\theta)p_1 \prod_{j=1}^{n} (\beta_j - r) - \sum_{i=1}^{n} A_i \prod_{j \neq i} (\beta_j - r)}.$$

Числитель последнего выражения является полиномом степени n-1, а знаменатель - полиномом степени n. Обозначим указанный числитель через $f_{n-1}(r)$, а знаменатель - через $g_n(r)$. Проверим, что знаменатель $g_n(x)$ имеет корни на интервалах $(0, \beta_1), (\beta_i, \beta_{i+1}), i = 1, 2, \ldots, n-1$. Для этого обозначим

$$h_n(r) = (1+\theta)p_1 - \sum_{i=1}^n (A_i)/(\beta_i - r) = g_n(r)/\prod_{j=1}^n (\beta_j - r),$$

тогда

$$h_n(0) = (1+\theta)p_1 - \sum_{i=1}^n A_i/\beta_i = \theta p_1 > 0,$$

так как $\sum_{i=1}^{n} A_i/\beta_i = p_1 = E[X]$. Кроме того, в силу неравенства

$$g_n(\beta_i) = A_i \prod_{j \neq i} (\beta_j - \beta_i) \neq 0, i = 1, 2, \dots n$$

нули функции $h_n(r)$ совпадают с нулями многочлена $g_n(r)$. Поскольку $\lim_{r\to\beta_1-0}h_n(r)=-\infty$, то отсюда следует, что на интервале $(0,\beta_1)$ многочлен $g_n(r)$ имеет корень, обозначим его через r_1 . Аналогично показывается, что на каждом из интервалов $(\beta_i,\beta_{i+1}), i=1,2,\ldots n-1$ многочлен имеет корень r_{i+1} . Следовательно, многочлен $g_n(r)$ степени n имеет n различных корней $r_i:r_i< r_{i+1}$. Поэтому вся дробь $f_{n-1}(r)/g_n(r)$ может быть представлена в виде

$$\sum_{i=1}^{n} c_i \frac{r_i}{r_i - r},$$

где c_i - некоторые константы, r_i — корни многчлена $g_n(r)$. Подставляя данное выражение в уравнение (4.11), получим:

$$-\int_{0}^{\infty} e^{ru} \psi'(u) du = \sum_{i=1}^{n} c_{i} \frac{r_{i}}{r_{i} - r},$$

из последнего равенства вытекает, что выражение для $\psi(u)$ есть

$$\psi(u) = \sum_{i=1}^{n} c_i e^{-r_i u}.$$

Рассмотрим частный случай, когда $p(x)=\beta e^{-\beta x}$, то есть n=1, распределение индивидуального иска экспоненциально. Тогда $M_X(r)=\beta/(\beta-r)=1/(1-p_1r)$, и правая часть в (4.11) равна

$$\frac{1}{1+\theta}\frac{\theta}{\theta-(1+\theta)p_1r} = c_1\frac{r_1}{r_1-r},$$

здесь $c_1 = 1/(1+\theta), r_1 = \theta/((1+\theta)p_1)$. Отсюда

$$\psi(u) = c_1 e^{-r_1 u}.$$

В частности, если $\theta = 0.25$, $\beta = 1$, то $p_1 = 1$, $c_1 = 0.8$, $r_1 = 0.2$, $\psi(u) = 0.8exp(-0.2u)$. В этом случае $\psi(u) < 0.05 \Longleftrightarrow u > 20 \ln 2 \cong 13.863$.

В данном разделе были изложены основные факты, касающиеся стохастического процесса поведения исков и изменения величины фонда собственных средств компании, теории разорения. Более полное изложение этой теории можно найти в [4]. Вопросы, когда страховая компания не может брать на себя большие иски и должна обращаться к перестраховочной компании, достаточно хорошо развиты с

математической точки зрения [1, 3].

ЗАДАЧИ

1. Пусть N(T)- пуассоновский процесс с параметром λ и $P(N(t)=n)=p_n(t)$. Доказать, что

$$p_0'(t) = -\lambda p_0(t), \quad p_n'(t) = -\lambda p_n(t) + \lambda p_{n-1}(t), \quad n \ge 1.$$

Решение. По определению величин $p_n(t)$ вероятность

$$p_{0}(t+dt) = P(N(t+dt) = 0|N(t) = 0)P(N(t) = 0) = 0$$

$$(1 - \lambda dt)p_{0}(t) \iff p'_{0}(t) = -\lambda p_{0}(t),$$

$$p_{n}(t+dt) = P(N(t+dt) = n|N(t) = n)P(N(t) = n) + 0$$

$$P(N(t+dt) = n|N(t) = n - 1)P(N(t) = n - 1) = 0$$

$$(1 - \lambda dt)p_{n}(t) + \lambda dtp_{n-1}(t) \iff 0$$

$$p_{n}(t+dt) - p_{n}(t) = (-\lambda p_{n}(t) + \lambda p_{n-1}(t))dt \iff 0$$

$$p'_{n}(t) = -\lambda p_{n}(t) + \lambda p_{n-1}(t), \quad n \ge 1.$$

2. Доказать, что $R < 2\theta p_1/p_2$.

Решение. Поскольку моменты случайной величины X положительны, то из равенства

$$M_X(R) = 1 + (1 + \theta)p_1R$$

и разложения $M_X(R) = 1 + p_1 R + 0.5 p_2 R^2 + \dots$ следует

$$p_1 R + 0.5 p_2 R^2 < p_1 R + \theta p_1 R \iff R < \frac{2\theta p_1}{p_2}$$

3. Пусть для производящей функции $M_X(r)$ существует γ , для которого $M_X(r)\to \infty$ при $r\to \gamma-0$. Найти $\lim_{c\to \lambda p_1} R$, $\lim_{c\to \infty} R$

Решение. Заметим, что $c \to \lambda p_1 \Longleftrightarrow \theta \to 0$, поэтому из неравенства $R < 2\theta p_1/p_2$ следует, что $\lim_{c \to \lambda p_1} R = 0$. Далее, из равенства (4.4) следует, что $\lim_{c \to \infty} M_X(r) = \infty$, откуда $\lim_{c \to \infty} R = \gamma$.

4. Известно, что распределение индивидуального иска дискретно, причем p(1) = 1/4, p(2) = 3/4, при этом $R = \ln 2$. Найти величину θ .

Решение. Находим $p_1=EX=7/4, \quad M_X(r)=0.25e^r+0.75e^{2r},$ откуда уравнение для определения R будет

$$0.25e^r + 0.75e^{2r} = 1 + 7r(1+\theta)/4,$$

из которого при r=R величина $\theta=(10-7\ln7)/7\ln2$.

5. Выписать выражения для EL_1 , $VarL_1$. Решение. Из представления (4.10) и равенства

$$M_X(r) = 1 + p_1 r + 0.5 p_2 r^2 + p_3 r^3 / 6 + \dots$$

следует

$$M_{L_1}(r) = 1 + 0.5p_2r/p_1 + p_3r^2/(6p_1) + \dots$$

Отсюда

$$EL_1 = 0.5p_2/p_1$$
, $E(L_1)^2 = p_3/(3p_1)$, $VarL_1 = p_3/(3p_1) - 0.25(p_2/p_1)^2$.

6. Пусть случайные величины W_i принимают значения 0 или 2, при этом P(W=0)=p>1/2, P(W=1)=1-p. Для c=1, $u\in\{0,1,2,\ldots\}$ требуется найти $U(\tilde{T}),$ $\tilde{R},$ $\tilde{\psi}(u).$

Решение. Пусть $\tilde{T}=n$, тогда U_{n-1} может принимать только нулевое значение. Тогда, поскольку $U_{n-1}=0$, то $U_n=0+c-W\in\{-1,1\}$, откуда следует $U(\tilde{T})=-1$. Для определения \tilde{R} учтем, что

$$M_W(r) = e^{2r}p + 1 - p,$$

тогда из равенства $\ln M_W(r) = r$ находим $e^{\tilde{R}} = p/(1-p)$, откуда $\tilde{R} = \ln p/(1-p)$. Далее,

$$\tilde{\psi}(u) = \frac{e^{-\tilde{R}u}}{e^{-\tilde{R}(-1)}} = e^{-\tilde{R}(u+1)}.$$

7. Определить вид $M_L(r)$, если индивидуальные иски равны 2. Решение. Из равенства (4.11) следует

$$M_L(r) = \frac{\theta}{1+\theta} + \frac{1}{1+\theta} \frac{\theta(e^{2r}-1)}{1+2(1+\theta)r - e^{2r}} = \frac{2r\theta}{1+2(1+\theta)r - e^{2r}}.$$

8. Вероятность разорения

$$\psi(u) = 0.4e^{-2u} + 0.2e^{-4u}.$$

Требуется вычислить θ и R.

Решение. Так как $\psi(0)=1/(1+\theta)=3/5$, то $\theta=2/3$. Из теоремы 12 и равенства (4.11) следует, что R=2.

9. Известно, что $c=1,\ \lambda=2$ и $p(x)=e^{-2x}+2e^{-4x}$. Требуется найти $p_1,\ \theta,\ M_X(r),\ R,\ \psi(u)$. Решение. По определению легко найти

$$M_X(r) = 1/(2-r) + 2/(4-r),$$

отсюда

$$p_1 = M_X'(0) = 3/8.$$

Далее из равенства $c=(1+\theta)p_1\lambda$ получаем $\theta=1/3$. Коэффициент поправки $R\in(0,2)$ находим из уравнения

$$r/2 = 1/(2-r) + 1/(4-r) - 1,$$

решая которое, получаем $R=2-\sqrt{2}$. Подставляя полученные значения p_1 , θ в равенство (4.11), получим, что правая часть этого равенства равна

$$\frac{1/(2-r)+2/(4-r)-1}{2r-4(1/(2-r)+2/(4-r)-1)} = \frac{3/2-r/2}{(r-(2+\sqrt{2}))(r-(2-\sqrt{2}))},$$

теперь, записывая левую часть (4.11) в виде

$$\frac{c_1(2+\sqrt{2})}{2+\sqrt{2}-r} + \frac{c_2(2-\sqrt{2})}{2-\sqrt{2}-r},$$

и приравнивая полученные выражения, находим

$$c_1 = (3 - 2\sqrt{2})/8, \quad c_2 = (3 + 2\sqrt{2})/8,$$

откуда

$$\psi(u) = \frac{3 - 2\sqrt{2}}{8}e^{-(2+\sqrt{2})u} + \frac{3 + 2\sqrt{2}}{8}e^{-(2-\sqrt{2})u}.$$

10. Пусть в авторегрессионной модели величина премии c=2, распределение случайной величины Y задается как $P(Y=2)=0.25, \, P(Y=0)=0.75,$ величина \hat{u} является четным числом. Определить выражение для $\tilde{\psi}(u,w)$ и найти, при каких \hat{u} значение $\tilde{\psi}(u,w)<0.01.$

Решение. Сначала найдем коэффициент поправки \hat{R} как положительное решение уравнения $e^{-2r}M_{2Y}(r)=1$. Из вида распределения случайной величины Y оно принимает вид $e^{2r}+3e^{-2r}=4$, откуда $\hat{R}=\ln\sqrt{3}$. Поскольку $\Delta\hat{u}_k\in\{\pm 2\}$, то $\hat{u}_{\hat{T}}=-2$, следовательно,

$$\tilde{\psi}(u, w) = \frac{e^{-\hat{u} \ln \sqrt{3}}}{e^{(-2)(-\ln \sqrt{3})}} = 3^{-1 - 0.5\hat{u}} < 0.01 \iff \hat{u} > 6.$$

5. Приложения теории риска.

Введение

Здесь мы рассмотрим некоторые примеры распределений индивидуальных исков в страховании различных видов объектов. Кроме того, рассмотрим методы аппроксимации случайной величины индивидуального иска при помощи изученного ранее обобщенного пуассоновского распределения. Различные формы перестрахования и влияние его на величину разорения так же будут здесь изучены.

5.1. Распределения индивидуального иска

Страхование от огня. Здесь могут быть самые различные виды исков в зависимости не только от вида застрахованных объектов, но и от природных условий, условий эксплуатации и т.д. Поэтому в данном виде страхования применяются различные модели распределения величин исков. Рассмотрим три примера.

Логнормальное распределение. Здесь функция распределения случайной величины индивидуального иска X есть $F(x) = \Phi(\ln x)$, где $\Phi(\cdot)$ функция нормального распределения с параметрами a, σ^2 :

$$\Phi(t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} exp(-\frac{1}{2} \left(\frac{x-a}{\sigma}\right)^{2}) dx.$$

Плотность распределения здесь

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} exp\left(-\frac{1}{2}\left(\frac{\ln(x) - a}{\sigma}\right)^2\right), \ x > 0,$$

нетрудно убедиться в том, производящая функция моментов $M_X(r)$ не определена ни при каких положительных r, поэтому данное распределение относится к классу распределений с "тяжелыми хвостами", но при этом для всякого $\alpha>0$ значение $f(x)=o(1/x^{\alpha})$. Среднее значение и дисперсия величины иска X выводятся достаточно просто: с помощью замены $u=\ln x$ выражение для интеграла

$$EX = \frac{1}{\sqrt{2\pi}\sigma} \int_0^\infty exp\left(-\frac{1}{2}\left(\frac{\ln x - a}{\sigma}\right)^2\right) dx$$

приводим к виду

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} exp\left(-\frac{1}{2}\left(\frac{u-a}{\sigma}\right)^2\right) \cdot exp(u)du =$$

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} exp\left(\frac{-u^2 + 2u(a+\sigma^2) - a^2}{2\sigma^2}\right) du =$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} exp\left(\frac{-u^2 + 2u(a+\sigma^2) - (a+\sigma^2)^2}{2\sigma^2} + \frac{(a+\sigma^2)^2 - a^2}{2\sigma^2}\right) du =$$

$$= exp(a+0.5\sigma^2) \cdot \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} exp\left(-\frac{(u-(a+\sigma^2))^2}{2\sigma^2}\right) du = exp(a+0.5\sigma^2).$$

Аналогично получается простое выражение для $E[X^2]$:

$$E[X^2] = \frac{1}{\sqrt{2\pi}\sigma} \int_0^\infty x exp\left(-\frac{1}{2}\left(\frac{\ln x - a}{\sigma}\right)^2\right) dx =$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^\infty exp\left(\frac{-u^2 + 2u(a + 2\sigma^2) - a^2}{2\sigma^2}\right) du =$$

$$= exp\left(\frac{(a + 2\sigma^2)^2 - a^2}{2\sigma^2}\right) = exp(2(a + \sigma^2),$$

откуда следует, что $VarX = exp(2(a+\sigma^2)) - exp(2a+\sigma^2) = exp(2a+\sigma^2) \cdot (exp(\sigma^2)-1)$.

Распределение Парето. Здесь функция распределения случайной величины индивидуального иска X есть $F(x) = 1 - (x_0/x)^{\alpha}$, $x > x_0$, $\alpha > 0$. Плотность распределения здесь $f(x) = \alpha(x_0)^{\alpha}/x^{\alpha+1}$, отсюда видно, что "хвост"этого распределения более тяжелый, нежели для логнормального случая, поэтому распределение Парето должно применяться для страхования объектов, у которых велика вероятность страхового случая с большим иском. Как и в предыдущем случае производящая функция моментов $M_X(r)$ не определена ни при каких положительных r, тем не менее

$$EX = \alpha(x_0)^{\alpha} \int_{x_0}^{\infty} x^{-\alpha} dx = \frac{\alpha}{\alpha - 1} x_0, \ (\alpha > 1)$$

$$EX^2 = \alpha(x_0)^{\alpha} \int_{x_0}^{\infty} x^{-\alpha + 1} dx = \frac{\alpha}{\alpha - 2} (x_0)^2, \ (\alpha > 2)$$

$$VarX = \alpha(x_0)^2 \left[\frac{1}{\alpha - 2} - \frac{\alpha}{(\alpha - 1)^2} \right] = \frac{\alpha(x_0)^2}{(\alpha - 1)^2 (\alpha - 2)}, \ (\alpha > 2).$$

Смесь экспоненциальных распределений. Здесь функция распределения случайной величины индивидуального иска X есть

$$F(x) = p(1 - e^{-ax}) + q(1 - e^{-bx}), x > 0, p + q = 1, 0 0,$$

соответствующая ей плотность $f(x)=pe^{-ax}+qe^{-bx}$. В отличие от двух предыдущих случаев это распределение не имеет тяжелого "хвоста", здесь $M_X(r)=pa/(a-r)+qb/(q-r)$, откуда

$$EX = \phi_S'(0) = p/a + q/b, \ VarX = \phi_S''(0) = \frac{p(1+q)}{a^2} + \frac{q(1+p)}{b^2} - \frac{2pq}{ab}.$$

В зависимости от природы застрахованного объекта, от величины вероятности предъявления больших исков в страховании от огня могут использоваться эти три вида распределения, параметры распределений подбираются по имеющейся статистике.

Автомобильное страхование. Здесь нет такой широкой вариабельности ущерба, как в страховании от огня, поэтому такие распределения, как Парето или логнормальное, в таком страховании применять нет смысла. Как правило, гаммараспределение здесь наиболее приемлемо, параметры его, конечно, подбираются по имеющейся статистике.

Коллективное страхование от кратковременной нетрудоспособности. Данный вид страхования применяется на предприятиях для компенсации ущерба, возникающиго от болезней, мелкого травматизма сотрудников. При этом имеется в виду, что сотрудник, к которому относится данный вид страхования, нетрудоспособен до трех месяце, и, кроме того, в качестве страхователя выступает руководство предприятия, а коллектив предприятия является застрахованным лицом. Возникающий при этом суммарный иск описывается моделью коллективного иска. На основе статистики, прогноза, состава коллектива сотрудников дается оценка по частоте случаев несложных заболеваний и мелкого травматизма для получения параметра λ . Для описания распределения индивидуального иска строится функция $P(Y > k), k = 1, 2, \dots 91,$ где Y- продолжительность болезни. Пример построения таблицы для получения случайной величины Y имеется, например, в [1]. Если c- величина выплаты больному за один день нетрудоспособности, то распределение величины иска задается как $p(x) = P(Y = x/c), x = c, 2c, \dots 91c.$

5.2. Аппроксимация распределения суммарного иска

Здесь будет рассмотрена аппроксимация распределения суммарного иска в модели индивидуального иска обобщенным распределением Пуассона. При этом параметры обобщенного распределения Пуассона будем подбирать исходя из аппроксимации производящей функции моментов исходного распределения.

Рассмотрим модель индивидуального иска

$$S = \sum_{j=1}^{n} X_j, X_j = I_j B_j, P(I_j = 1) = q_j, EB_j = \mu_j, VarB_j = \sigma_j^2, j = 1, 2, \dots n.$$

Случайные величины X_j здесь предполагаются независимыми, поэтому

$$E[S] = \sum_{j=1}^{n} q_j \mu_j, \quad VarS = \sum_{j=1}^{n} q_j (1 - q_j) \mu_j^2 + \sum_{j=1}^{n} q_j \sigma_j^2.$$

Кроме того, $M_{X_j}(r)=(1-q_j)+q_jM_{B_j}(r)=1+q_j(M_{B_j}(r)-1),$ откуда

$$\phi_S(r) = \sum_{j=1}^n \ln[1 + q_j(M_{B_j}(r) - 1)].$$

При малых значениях q_j, r последняя сумма приближенно равна

$$\sum_{j=1}^{n} q_j (M_{B_j}(r) - 1). \tag{5.1}$$

Аппроксимация (5.1) соответствует следующей аппроксимации распределения случайной величины S. Обозначим функцию распределения случайной величины B_j через $P_j(x)$, тогда суммарный иск S будем аппроксимировать случайной величиной Z с обобщенным распределением Пуассона с параметрами $(\lambda, P(x))$, где

$$\lambda = \sum_{j=1}^{n} q_j, \quad P(x) = \sum_{j=1}^{n} \frac{q_j}{\lambda} P_j(x).$$

Тогда если X— случайная величина с функцией распределения P(x), то

$$\phi_Z(r) = \lambda(M_X(r) - 1) = \sum_{j=1}^n q_j(M_{B_j}(r) - 1),$$

что соответствует (5.1). Следовательно, случайная величина Z аппроксимирует суммарный иск S. Кроме того,

$$E[Z] = \phi_Z'(0) = \sum_{j=1}^n q_j M_{B_j}'(0) = \sum_{j=1}^n q_j \mu_j, \ VarZ = \sum_{j=1}^n q_j M_{B_j}''(0) = \sum_{j=1}^n q_j (\mu_j^2 + \sigma_j^2).$$

Отсюда следует

$$E[Z] = E[S] = \sum_{j=1}^{n} q_j \mu_j, \ Var[Z] = \sum_{j=1}^{n} q_j (\mu_j^2 + \sigma_j^2) > E[S],$$

при этом разностью $Var[Z]-Var[S]=\sum_{j=1}^n q_j^2\mu_j^2$ можно пренебречь при малых значениях $q_i,j=1,2,\ldots,n$. Рассмотрим

Пример 5.1. Величина исков подчиняется экспоненциальному распределению, для которого функция распределения $F(x) = 1 - \exp(-\lambda x), \quad x \in (0, \infty).$

Обладатели полисов распределены по двум категориям. Для k-й категории (k=1,2) количество клиентов равно n_k , вероятность страхового случая равна q_k , параметры распределения величины иска равны λ_k , значения перечисленных параметров приведены в таблице:

k	n_k	q_k	λ_k	μ_k	σ_k^2
1	500	0.1	1	1	1
2	2000	0.05	2	0.5	0.25

Требуется вычислить E[S], E[Z], Var[S], Var[Z].

Решение. Здесь

$$\lambda = 0.1(500) + 0.05(2000) = 150,$$

$$p(x) = e^{-x} \left(\frac{0.1}{150}\right)(500) + 2e^{-2x} \left(\frac{0.05}{150}\right)(2000) = \frac{1}{3}e^{-x} + \frac{4}{3}e^{-2x}.$$

Тогда

$$E[Z] = \lambda p_1 = (150)(\frac{1}{3} + \frac{2}{3} \cdot 0.5) = 100, \ Var[Z] = \lambda p_2 = (150) \cdot 1 = 150.$$

Для исходной случайной величины S значение

$$E[S] = (500)(0.1)1 + (2000)(0.05)0.5 = 100,$$

$$Var[S] = (500)(0.1)(0.9)(1) + (2000)(0.05)(0.95)(0.25) + (500)(0.1)(1) +$$

$$+ (2000)(0.05)(0.25) = 143.75 < E[Z].$$

Другой метод аппроксимации распределения случайной величины S обобщенным распределением Пуассона состоит в том, что мы каждое слагаемое X_j аппроксимируем случайной величиной Y_j , имеющей обобщенное распределение Пуассона с параметрами $(\lambda'_j, P_j(x))$, где $\lambda'_j = -\ln(1-q_j) > 0$. Тогда

$$M_{Y_i}(r) = e^{\lambda'(M_{B_i}(r)-1)}, \phi_{Y_i}(r) = \lambda'_i(M_{B_i}(r)-1).$$

При этом обе функции

$$\phi_{X_j}(r) = \ln(1 + q_j(M_{B_j}(r) - 1)), \ \phi_{Y_j}(r) = -(M_{B_j}(r) - 1))\ln(1 - q_j)$$

аппроксимируется величиной $q_i(M_{B_i}(r)-1)$). Далее, полагая

$$\lambda' = \sum_{j=1}^{n} \lambda'_{j}, \ P(x) = \sum_{j=1}^{n} \frac{\lambda'_{j}}{\lambda'} P_{j}(x),$$

аппроксимируем суммарный иск S обобщенным пуассоновским распределением Y с параметрами $(\lambda', P(x))$. При этом $\phi_Y(r)$ аппроксимируется функцией $\phi_Z(r) = \sum_{j=1}^n q_j(M_{B_j}(r)-1)$). Надо отметить, что величина

$$EY = \lambda' p_1 = \sum_{j=1}^{n} \lambda'_j \mu_j > E[Z] = E[S],$$

поскольку $\lambda_{j}' > q_{j}, \ j = 1, 2, \dots, n$. Аналогично

$$Var[Y] = \sum_{j=1}^{n} \lambda'_{j}(\mu_{j}^{2} + \sigma_{j}^{2}) > Var[Z] > Var[S].$$

Рассмотрим предыдущий пример. Здесь легко получить

$$\lambda'_1 = 0.1054, \ \lambda'_2 = 0.05129 \Rightarrow \lambda' = 155.2668.$$

Плотность распределения

$$p(x) = e^{-x} \frac{0.1054}{155,2668} (500) + 2e^{-2x} \frac{0.05129}{155,2668} (2000) = 0.3393e^{-x} + 1.3214e^{-2x}.$$

Теперь

$$E[Y] = \lambda' p_1 = 155.2668(0.3393(1) + 0.6607(0.5)) = 103.9736,$$

$$Var[Y] = \lambda' p_2 = \sum_{j=1}^{n} \lambda'_{j} (\mu_{j}^{2} + \sigma_{j}^{2}) =$$

$$0.1054(500)(1+1) + 0.05129(2000)(0.25 + 0.25) = 156.6538 > E[Z] > E[S].$$

5.3. Останавливающее потери перестрахование

Здесь рассмотрим эффект от перестрахования останавливающего потери, когда страховая компания - цедент - берет на себя ответственность за нижнюю границу суммарного иска, а за верхнюю часть отвечает перестраховочная компания. Более точно, страховая компания-цедент оставляет у себя иски на сумму, равную

$$S - I_d = \begin{cases} S, & \text{если} \quad S \le d, \\ d, & \text{если} \quad S > d \end{cases}$$

Таким образом, величина оплачиваемого иска ограничена сверху величиной d, этим объясняется термин "останавливающее потери". Величина равная I_d покрывается перестраховщиком; как и ранее значение

$$I_d = \left\{ \begin{array}{cc} 0, & \text{если} & S \le d, \\ S - d, & \text{если} & S > d \end{array} \right.$$

Поскольку за услуги перестрахования страховщик выплачивает сумму, возрастающую с ростом I_d , то нас будет интересовать, в каких пределах может изменяться эта величина. Пусть f(x), F(x)— плотность и функция распределения случайной величины S соответственно. Тогда

$$E[I_d] = \int_d^{\infty} (x - d)f(x)dx = \int_0^{\infty} (x - d)f(x)dx - \int_0^d (x - d)f(x)dx,$$

откуда следует важное соотношение

$$E[I_d] = E[S] - d - \int_0^d (x - d)f(x)dx.$$
 (5.2)

Если S имеет дискретное распределение, то последнее равенство принимает вид

$$E[I_d] = E[S] - d + \sum_{x=0}^{d-1} (d-x)f(x).$$

Другое выражение для $E[I_d]$ получается из равенства

$$E[I_d] = \int_d^\infty (1 - F(x)) dx = \int_0^\infty (1 - F(x)) dx - \int_0^d (1 - F(x)) dx =$$

$$E[S] - \int_0^d (1 - F(x)) dx. \tag{5.3}$$

Для дискретного распределения суммарного иска величина

$$E[I_d] = \sum_{x=d+1}^{\infty} (x-d)f(x) = \sum_{x=d}^{\infty} (x-d)f(x),$$

откуда

$$E[I_{d+1}] = \sum_{x=d+1}^{\infty} (x-d-1)f(x) = \sum_{x=d+1}^{\infty} (x-d)f(x) - \sum_{x=d+1}^{\infty} f(x) = E[I_d] - (1-F(d)).$$

Аналогично для всякого $t \in [0,1]$ имеет место равенство

$$E[I_{d+t}] = E[I_d] - t(1 - F(d))$$
(5.4)

Рассмотрим следующий

Пример 5.2. Пусть S имеет гамма-распределение, то есть $F(x) = G(x : \alpha, \beta)$. Требуется выразить $E[I_d]$ через значения $G(d : \alpha, \beta)G(d : \alpha + 1, \beta)$.

Решение. Величина

$$E[I_d] = \int_d^\infty x f(x) dx - d[1 - F(d)] = \frac{\beta^\alpha}{\Gamma(\alpha)} \int_d^\infty x^\alpha e^{-\beta x} dx - d(1 - G(d : \alpha, \beta)) =$$

$$\frac{\Gamma(\alpha + 1)}{\Gamma(\alpha)} \frac{1}{\beta} \frac{\beta^{\alpha + 1}}{\Gamma(\alpha + 1)} \int_d^\infty x^\alpha e^{-\beta x} dx - d(1 - G(d : \alpha, \beta)) =$$

$$\frac{\alpha}{\beta} (1 - G(d : \alpha + 1, \beta)) - d(1 - G(d : \alpha, \beta)).$$

Заметим, что если для некоторых a < b справедливо равенство F(a) = F(b), то из равенства F(x) = F(a) а так же из (5.3) следует, что для любого $d \in (a, b)$ величина

$$E[I_d] = E[I_a] - (d-a)(1-F(a)).$$

Полученное соотношение, что хорошо видно из (5.4), особенно удобно в случае дискретного распределения суммарного иска S. Рассмотрим теперь такой

Пример 5.3. Пусть число исков N имеет распределение

$$P(N = 0) = 0.5, P(N = 1) = 0.4, P(N = 2) = 0.1.$$

при этом величина индивидуального иска X распределена так:

$$P(X = 1) = P(X = 3) = 0.2, P(X = 2) = 0.6.$$

Требуется определить значения $E[I_d]$ для $d = 0, 1, \dots, 6$.

Решение. Здесь прежде всего определим f(x), F(x). Используя соотношение

$$f(x) = \sum_{k \ge 0} p^{*k}(x) P(N = k),$$

получим $f(x) = 0.5p^{*0}(x) + 0.4p^{*1}(x) + 0.1p^{*2}(x), x = 0, 1, \dots, 6$. Для удобства необходимых вычислений заполним таблицу

	.:.O. /	1 / \	2 / \	e /)	T ()	4 T/
X	$p^{*0}(x)$	$p^{*1}(x)$	$p^{*2}(x)$	f(x)	F(x)	1 - F(x)
0	1	0	0	0.5	0.5	0.5
1	0	0.2	0	0.08	0.58	0.42
2	0	0.6	0.04	0.244	0.824	0.176
3	0	0.2	0.24	0.104	0.928	0.072
4	0	0	0.44	0.044	0.972	0.028
5	0	0	0.24	0.024	0.996	0.004
6	0	0	0.04	0.004	1	0
P(N):	0.5	0.4	0.1			

Из полученной таблицы вычисляем $E[S] = E[I_0] = 1.2$. Далее из равенства $E[I_{d+1}] = E[I_d] - (1 - F(d))$ вычисляем:

1. $E[I_1] = 1.2 - 0.5 = 0.7$,

 $2.E[I_2] = 0.7 - 0.42 = 0.0.28,$

 $3.E[I_3] = 0.28 - 0.176 = 0.104,$

 $4.E[I_4] = 0.104 - 0.072 = 0.032,$

 $5.E[I_5] = 0.032 - 0.028 = 0.004,$

 $6.E[I_6] = 0.004 - 0.004 = 0$. Пусть теперь суммарный иск S имеет обобщенное распределение Пуассона, величина индивидуального иска имеет такое же распределение, как и в предыдущем примере, значение параметра λ равно 0.1. Вычислим $E[I_d]$ для $d=0,1,\ldots,6$. Сначала определим

$$f(0) = F(0) = e^{-\lambda} = 0.9048,$$

$$p_1 = (0.2)(1) + (0.6)(2) + (0.2)(3) = 2 \Rightarrow E[I_0] = \lambda p_1 = 0.2.$$

Далее, из формулы

$$f(x) = (\lambda/x) \sum_{j \ge 1} j p(j) f(x - j)$$

вычисляем

$$f(1) = (0.1)(0.2)(0.9048) = 0.0181, F(1) = F(0) + f(1) = 0.9048 + 0.0181 = 0.9229 \Rightarrow .$$

$$E[I_1] = E[I_0] - (1 - F(0)) = 0.2 - (1 - 0.9048) = 0.1048$$

 $E[I_2] = E[I_1] - (1 - F(1)) = 0.0277,$

$$f(2) = (0.1)/(2)[(0.2)(0.0181) + 2(0.6)(0.9048)] = 0.05447, F(2) = 0.9229 + 0.05447 = 0.9774,$$

 $E[I_3] = 0.0277 - (1 - 0.9774) = 0.0051$

и далее для других $x = 4, 5, \dots$

Для случая дискретного распределения S рассмотрим удобный способ вычисления $Var[I_d]^2 = E[I_d^2] - (E[I_d])^2$. Для вычисления $E[I_d]$ рекуррентная формула уже была получена, теперь рассмотрим аналогичную формулу для $E[I_d^2]$:

$$E[I_{d+1}^2] = \sum_{j \ge d+2} (x - (d+1))^2 f(x) = \sum_{j \ge d+1} [(x-d)^2 - 2(x-d) + 1] f(x) = \sum_{j \ge d+2} (x - (d+1))^2 f(x) = \sum_{j \ge$$

$$\sum_{j \ge d+1} (x-d)^2 f(x) - 2 \sum_{j \ge d+1} (x-d) f(x) + 1 - F(d) = E[I_d^2] - 2E[I_d] + 1 - F(d).$$

При этом $E[I_0^2] = VarS + (E[S])^2 = \lambda p_2 + (\lambda p_1)^2$.

Рассмотрим случай, когда применение рекуррентной формулы для вычисления f(x) упрощено.

Пример 5.4. Пусть S распределено по обобщенному закону Пуассона с параметрами $\lambda = 0.5$, p(1) = 2/3, p(2) = 1/3. Требуется вычислить f(x), F(x), $E[I_x]$ для $x = 0, 1, \ldots, 5$.

Решение. Прежде всего $f(0)=F(0)=e^{-0.5}=0.6065, \quad p_1=4/3, \quad E[I_0]=\lambda p_1=2/3, \quad p_2=2, \quad Var[I_0]=Var[S]=\lambda p_2=1, \quad E[I_0^2]=\lambda p_2+(\lambda p_1)^2=1+4/9=1.4444.$

Поскольку $\lambda j p(j) = 1/3$ для j = 1, 2, то

$$f(x) = \frac{1}{3x}(f(x-1) + f(x-2)), \ x = 2, 3, \dots$$

При этом f(1) = f(0)/3, F(x) = F(x-1) + f(x), $E[I_x] = E[I_{x-1}] - (1 - F(x-1))$, откуда получаем таблицу

X	f(x)	F(x)	$E[I_x]$	$E[I_x^2]$	$Var[I_x]$
0	0.6065	0.6065	0.6667	1.4444	1
1	0.2022	0.8087	0.2732	0.5046	0.43
2	0.1348	0.9435	0.0819	0.1495	0.1428
3	0.0374	0.9809	0.0254	0.0422	0.041582
4	0.01435	0.9953	0.0063	0.0105	0.0105
5	0.00345	0.9987	0.001587	0.002637	0.002634

Рассмотрим теперь ситуацию, типичную для коллективного страхования жизни, когда страховщик назначает премию G, которая не только покрывает весь ущерб величины S, но и обеспечивает дивиденд величины D призванный поощрить страхователя избегать больших больших исков. Этот дивиденд будем выбирать в виде

$$D = \left\{ \begin{array}{ccc} kG - S, & \text{если} & S < kG, \\ 0, & \text{если} & S \ge kG. \end{array} \right.$$

Здесь коэффициент k выбирается из интервала (0,1). Страхователь таким образом платит премию G и в конце срока страхования получает величину S+D. Если f(x)— плотность распределения S, то

$$ED = \int_0^{kG} (kG - x) f(x) dx, \quad ED + E[S] = kG \int_0^{kG} f(x) dx + \int_{kG}^{\infty} x f(x) dx.$$

Если величина премии G > E[S], то за счет выбора коэффициента k всегда можно добиться условия E[S] + ED < G.

Пример 5.5. Пусть суммарный иск S распределен как в примере 5..4, величина премии G=2. Кроме полного возмещения ущерба страховщик обязуется выплатить дивиденд равный превышению 0.8 премии над иском. Требуется вычислить разность G-E[S]-E[D], равную ожидаемой величине, которая покрывает расходы страховщика на налоги, безопасную нагрузку, и т.д.

Решение. Здесь коэффициент

$$k = 0.8 \Rightarrow kG = 1.6, E[D] = (1.6)f(0) + (1.6 - 1)f(1) = 1.0918.$$

Отсюда искомая величина равна

$$2 - E[S] - E[D] = 2 - 0.6667 - 1.0918 = 0.2412.$$

В определениии *D* имеем

$$E[D] = \int_0^\infty (kG - x)f(x)dx + \int_{kG}^\infty (x - kG)f(x)dx \iff E[D] + E[S] = kG + E[I_{kG}].$$

В последнем примере полученное равенство дает $E[D] = kG - E[S] + E[I_{kG}] = 1.6 - 0.6667 + 0.2732 - 0.6(1 - 0.8087) = 1.0918$. Здесь было использовано равенство

$$E[I_{1.6}] = E[I_1] - 0.6(1 - F(1)).$$

Из определения D следует, что

$$S+D = \left\{ \begin{array}{ll} kG, & \text{если} & S < kG, \\ S, & \text{если} & S \geq kG \end{array} \right. \iff S+D = kG + I_{kG} \iff S+D-G = I_{kG} - (1-k)G.$$

Последнее равенство имеет экономический смысл: полученные страхователем деньги от коллективного страхования за вычетом премии равны сумме, покрытой перестраховкой с францизой kG за вычетом части премии (1-k)G. Таким образом, премия G разбивается на 2 части: kG и (1-k)G. Первая из них предназначена для оплаты исков(без перестрахованной суммы) и дивиденда, а вторая - для оплаты оплаты налогов, технических издержек, безопасной нагрузки и т.д.:

$$kG = (S - I_{kG}) + D, (1 - k)G = G - [(S - I_{kG}) + D].$$

5.4. Перестрахование и вероятность разорения

За услуги перестрахования страховщик платит сумму, равную $c_{re} = (1 + \theta_{re})E[I_d]$. При этом перед страховшиком стоят две противоположные задачи: обеспечить надежность страховой защиты, для чего нужно как можно больше риска направить перестраховщику и обеспечить наибольшую прибыль свой компании. Под надежностью страховой защиты будем понимать вероятность неразорения, которая непосредственно зависит от коэффициента поправки $R: \psi(u) < e^{-Ru}$.

Пример 5.6. Пусть как и в предыдущем примере, величины $\lambda=0.5,\ p(1)=2/3, p(2)=1/3,$ годовая премия c=1.5. Требуется:

- 1. Определить коэффициент поправки для дискретной модели изменения капитала.
- 2. При $\theta_{re}=0.8$ вычислить коэффициент поправки R_d случайной величины оставшегося иска для d=1,2,3,4.

Решение. 1. Для случайной величины $W = x_1 + X_2 + \ldots + X_N$ коэффициент поправки R найдем из уравнения $e^{-cr}M_W(r) = 1$, т.е.

$$0.5 + 1.5r = 0.5(2/3e^r + 1/3e^{2r}) \Rightarrow R = 0.9159.$$

2. Ранее были получены значения величин $E[I_d]$. Поэтому при всех значениях d цена перестраховки равна $(1+\theta_{re})E[I_d]$. Например, при d=1 сумма, отправленная на перестраховку, равна 0.4918, откуда часть премии, оставшаяся у страховщика в

году і, равна $c^{'}=c-c_{re}=1.5-0.4918=1.0082;$ оставшийся иск на том же году равен

$$W_i^{'} = \left\{ egin{array}{ll} W_i, & ext{если} & W_i = 0, 1, \dots d - 1, \\ d, & ext{если} & W_i \geq d. \end{array}
ight.$$

Здесь W_i — суммарный иск на году і. Найдем решение уравнения $e^{-c'r}M_{W_i'}(r)=1$:

$$e^{-c'r} \left[\sum_{x=0}^{d-1} f(x)e^{xr} + (1 - F(d-1))e^{dr} \right] = 1.$$

Если d=1, то

$$W_i' = \begin{cases} 0, & \text{если} & W_i = 0, \\ 1, & \text{если} & W_i \ge 1. \end{cases}$$

Отсюда следует, что любая реализация случайной величины $W_i^{'}$ меньше $c^{'}$, следовательно, при d=1 разорение невозможно, и не случайно при d=1 уравнение

$$e^{-1.0082r}[e^{0r}f(0) + (1 - F(0))e^r] = 1$$

конечного положительного решения не имеет.

$$d=2\Rightarrow E[I_2]=0.0819\Rightarrow c_{re}=1.8\cdot 0.0819=0.14742\Rightarrow c^{'}=c-c_{re}=1.35258\Rightarrow e^{-1.35258r}[e^{0r}f(0)+e^{r}f(1)+(1-F(1))e^{2r}]=1\Longleftrightarrow e^{-1.35258r}[0.6065+0.2022e^{r}+0.1913e^{2r}]=1\Rightarrow R_2=2.3708.$$

$$d=3\Rightarrow E[I_3]=0.0254\Rightarrow c_{re}=1.8\cdot 0.0254=0.04572\Rightarrow c^{'}=1.45428\Rightarrow e^{-1.45428r}[e^{0r}f(0)+e^{r}f(1)+e^{2r}f(2)+(1-F(2))e^{3r}]=1\Longleftrightarrow e^{-1.45428r}[0.6065+0.2022e^{r}+0.1348e^{2r}+0.0565e^{3r}]=1\Rightarrow R_3=1.44139.$$

$$d=4\Rightarrow E[I_4]=0.0063\Rightarrow c_{re}=0.01134\Rightarrow c^{'}=1.48866\Rightarrow e^{-1.48866r}[0.6065+0.2022e^{r}+0.1348e^{2r}+0.0374e^{3r}+0.0191e^{4r}]=1\Rightarrow R_4=1.1281$$
 Аналогично вычисляется $R_5=1.0169$ из уравнения $e^{-1.49712}[0.6065+0.2022e^{r}+0.1348e^{2r}+0.0374e^{3r}+0.01435e^{4r}+0.0047e^{5r}]=1.$

Ожидаемая прибыль g за один год равна разности $c-c_{re}-E[(S-I_d(S))]=$ (ожидаемая прибыль без перестрахования $=c-E[S_i]$) - (ожидаемые потери от перестраховки $=c_{re}-E[I_d]$). Составим таблицу

d	R_d	g	$g \cdot R_d$
0	0.9159	0.3	0.2748
1	∞	0.6148	∞
2	2.3708	0.7678	1.8203
3	1.4414	0.8130	1.1719
4	1.1281	0.8283	0.9349
5	1.0169	0.8321	0.8461

Из полученной таблицы видно, что с возрастанием d коэффициент поправки уменьшается, а выигрыш от перестрахования увеличивается. При этом поведение произведения $R_d \cdot g$ позволяет сделать вывод, что существует некоторый оптимальный уровень, максимизирующий данное произведение. Рассмотрим далее различные виды перестрахования и сравним с точки зрения вероятности разорения, которую будем связывать с величиной коэффициента поправки случайной величины неперестрахованной суммы. Именно, сравним два вида перестрахования: пропорционального, где величина перестрахованной суммы h зависит от общей суммы иска x как $h(x) = h_{pr}(x) = k_{re}x, \ k_{re} \in [0,1]$, и перестрахование превышения убытка, где

$$h(x) = h_{\beta}(x) = \begin{cases} 0, & \text{если} \quad x \leq \beta \\ x - \beta, & \text{если} \quad x > \beta \end{cases}$$

Пусть имеется непрерывная модель разорения, тогда если величина премии равна c, а стоимость перестраховки равна c_{re} , то величина коэффициента поправки представляет собой положительное решение уравнения

$$\lambda + (c - c_{re})r = \lambda \int_0^\infty e^{r(x - h(x))} p(x) dx.$$

Здесь разность $c-c_{re}$ равна величине оставшейся части премии после оплаты услуги перестрахования, а x - h(x) – величине неперестрахованного иска.

Рассмотрим

Пример 5.7. Пусть иски представляют собой обобщенный процесс Пуассона с параметрами ($\lambda = 1, p(x) = 1, x \in [0,1]$). Для пропорционального перестрахования с параметрами $k_{re} \in [0,1)$ требуется вычислить коэффициент поправки R для значений $\theta_{re} = 0.5, 1, 1.5, 2$.

Решение. Здесь величина

$$c_{re} = (1 + \theta_{re})\lambda \int_0^1 k_{re}x dx = 0.5(1 + \theta_{re})\lambda k_{re} = 0.5(1 + \theta_{re})k_{re}.$$

При этом значение $c_{re} < c = 1 \iff k_{re} < 2/(1 + \theta_{re})$. Теперь уравнение для определения $R_{\theta_{re}}$ примет вид

$$1 + (1 - k_{re} \frac{1 + \theta_{re}}{2})r = \frac{e^{r(1 - k_{re})} - 1}{r(1 - k_{re})}.$$

Численные решения его указаны в таблице:

k_{re}	$R_{0.5}$	R_1	$R_{1.5}$	R_2
0	1.7933	1.7933	1.7933	1.7933
0.1	2.0610	1.9925	1.9214	1.8450
0.2	2.4112	2.2416	2.0573	1.8565
0.3	2.8852	2.5618	2.1888	1.8856
0.4	3.5555	2.9888	2.2801	1.8560
0.5	4.5609	3.5866	2.2185	-
0.6	6.1973	4.4832	1.5873	-
0.7	9.2117	5.9700	-	-
0.8	16.0678	8.9664	-	-
0.9	40.8112	17.9328	-	-

Пусть теперь рассматривается перестрахование превышения убытка. Вычислим коэффициент поправки для значений параметра $\beta \in (0,1)$ и тех же значений θ_{re} .

Здесь величина c_{re} вычисляется как

$$c_{re} = (1 + \theta_{re}) \int_{\beta}^{1} (x - \beta) dx = 0.5(1 + \theta_{re})(1 - \beta)^{2}.$$

Тогда $c_{re} < c = 1 \Longleftrightarrow (1 - \beta)^2 < 2(1 + \theta_{re})$. Уравнение для определения $R_{\theta_{re}}$ будет

$$1 + [1 - 0.5(1 + \theta_{re})(1 - \beta)^{2}]r = \int_{0}^{\beta} e^{rx} dx + \int_{0}^{1} e^{r\beta} dx = \frac{e^{r\beta} - 1}{r} + (1 - \beta)e^{r\beta},$$

после решения которого получим таблицу

β	$R_{0.5}$	R_1	$R_{1.5}$	R_2
0.1	24.1284	12.746	-	-
0.2	9.4885	6.4779	1.0741	-
0.3	5.6102	4.4003	2.7626	0.2705
0.4	3.9420	3.3728	2.6937	1.8559
0.5	3.0526	2.7681	2.4522	2.0974
0.6	2.5203	2.3784	2.2278	2.0671
0.7	2.1822	2.1162	2.0480	1.9776
0.8	1.9659	1.9403	1.9144	1.8881
0.9	1.8387	1.8328	1.8269	1.8211
1	1.7933	1.7933	1.7933	1.7933

Из полученных таблиц можно сравнить значения коэффициента поправки для этих двух видов перестрахования при одинаковой перестраховой сумме c_h . Это означает, что при сравнении значений коэффициентов поправки параметры k_{re} , β должны быть связаны условием $E[h_{pr}(X)] = E[h_{\beta}(X)] \iff k_{re} = (1-\beta)^2$.

Выбирая, в частности, $\beta=0.2, k_{re}=0.64,$ получим, что для пропорционального перестрахования коэффициент поправки должен лежать на интервале (6,9), а для перестрахования превышения убытка при том же значении параметра $\theta_{re}=0.5$ этот

коэффициент равен 9.4885. Аналогичные сравнения можно провести и для других пар (k_{re}, β) .

Справедлива

Теорема 14 Для любого перестрахования h(x) удовлетворяющего условиям $c_h = c_{\beta}$, $E[h(X)] = E[h_{\beta}(X)]$ справедливо неравенство $R_h \leq R_{\beta}$.

Доказательство. Поскольку R_h является корнем уравнения

$$\lambda + (c - c_h)r = \lambda M_{X - h(X)}(r),$$

при этом $M_{X-h(X)}(r)$ выпукла по переменной r, то наше утверждение будет доказано, если будет доказано неравенство

$$M_{X-h(X)}(r) \ge M_{X-h_{\beta}(X)}(r), \ r > 0.$$
 (5.5)

Для этого сначала отметим, что функция $e^{[x-h(x)]r}$ переменного r выпукла (в силу положительности ее второй производной), откуда

$$e^{[x-h(x)]r} - e^{[x-h_{\beta}(x)]r} \ge re^{[x-h_{\beta}(x)]r} (h_{\beta}(x) - h(x)). \tag{5.6}$$

Если в правой части (5.6) разность $h_{\beta}(x) - h(x)$ положительна, то разность $x - h_{\beta}(x) = \beta$ и тогда эта правая часть равна $re^{\beta r}(h_{\beta}(x) - h(x))$.

В случае же, когда $h_{\beta}(x) - h(x) < 0$, мы воспользуемся неравенством $x - h_{\beta}(x) \le \beta$, тогда правая часть в (5.6) больше произведения $re^{\beta r}(h_{\beta}(x) - h(x))$. Таким образом для любой реализации x случайной величины S будет

$$e^{[x-h(x)]r} - e^{[x-h_{\beta}(x)]r} \ge re^{\beta r} (h_{\beta}(x) - h(x)).$$

Последнее неравенство означает, что

$$E[e^{[X-h(X)]r}] - E[e^{[X-h_{\beta}(X)]r}] \ge re^{\beta r} E[h_{\beta}(X) - h(X)] = 0,$$

откуда следует справедливость (5.5).

ЗАДАЧИ

1. Суммарный иск в страховой компании распределен по обобщенному закону Пуассона с параметрами ($\lambda=1,\ p(x)=e^{-x},\ x>0$). Премии страхователей включают относительную безопасную нагрузку, равную $\theta>0$. Нагрузка перестраховщика равна $\theta_{re}>0$. Требуется вычислить коэффициент поправки в случае пропорционального перестрахования с параметром $k_{re}=0.449329$ для $\theta=0.3, \theta_{re}=0.4$ и определить относительную безопасную нагрузку страховщика на оставшуюся после перестраховки премию.

Решение.

$$p_1 = 1, \lambda = 1 \Rightarrow c = \lambda(1+\theta)p_1 = (1+\theta);$$

$$c - c_{re} = (1+\theta) - (1+\theta_{re})k_{re} > 0 \iff k_{re} \in (0, \frac{1+\theta}{1+\theta_{re}}),$$

уравнение для определения R будет иметь вид

$$\lambda + (c - c_{re})r = M_{X - h(X)}(r) \iff 1 + [(1 + \theta) - (1 + \theta_{re})k_{re}]r = \frac{1}{1 - r(1 - k_{re})}. \qquad (r < \frac{1}{1 - k_{re}})$$

Умножая это уравнение на знаменатель правой части, получим

$$R = \frac{\theta - \theta_{re} k_{re}}{(1 - k_{re})[1 + \theta - (1 + \theta_{re})k_{re}]}.$$

При заданных значениях параметров величина R=0.32552. Среднее значение оставшейся части иска равно

$$1 - k_{re} = \frac{d}{dr} M_{X - h(X)}(0),$$

поэтому искомая безопасная нагрузка θ_1 находится из соотношения

$$c - c_{re} = (1 + \theta_1)(1 - k_{re}) \iff (1 + \theta) - (1 + \theta_{re})k_{re} = (1 + \theta_1)(1 - k_{re}),$$

откуда
$$\theta_1 = (\theta - \theta_{re} k_{re})/(1 - k_{re}) = 0.2184.$$

2. Пусть суммарный иск распределен так же как и в предыдущей задаче, параметры θ, θ_{re} аналогично имеют те же значения, но вместо пропорционального перестрахования рассматривается перестрахование превышения убытка с параметром β . Требуется выписать уравнение для определения коэффициента поправки и решить его численно при значениях $\theta=0.3, \theta_{re}=0.4, \beta=0.8$. Определить значение относительной безопасной нагрузки страховщика на оставшуюся после перестраховки премию.

Решение. Из (5.2) следует, что

$$E[I_{\beta}] = 1 - \beta - \int_{0}^{\beta} (x - \beta)e^{-x}dx = e^{-\beta},$$

а значит величина оставшейся премии

$$c - c_{re} = (1 + \theta) - (1 + \theta_{re})e^{-\beta} > 0 \iff e^{-\beta} < \frac{1 + \theta}{1 + \theta_{re}}$$

Далее, функция

$$M_{X-h_{\beta}(X)}(r) = \int_{0}^{\beta} e^{rx} e^{-x} dx + \int_{\beta}^{\infty} e^{\beta r} e^{-x} dx = \frac{1 - re^{-\beta(1-r)}}{1 - r},$$

откуда уравнение для определения коэффициента поправки будет

$$1 + [(1+\theta) - (1+\theta_{re})e^{-\beta}]r = \frac{1 - re^{-\beta(1-r)}}{1 - r} \iff [(1+\theta) - (1+\theta_{re})e^{-\beta}]r = \frac{r(1 - e^{-\beta(1-r)})}{1 - r}.$$

Подставляя в это уравнение указанные значения параметров, получаем решение R=0.5465. Следует заметить, что средние значения перестрахованного ущерба для рассмотренных случаев здесь и в предыдущей задаче равны E[h(X])=0.449329, но значение R в последнем случае, как следует из теоремы о перестраховании, превосходит первое: 0.5465>0.449329. Теперь из соотношения $c-c_{re}=\lambda(1+\theta_1)E[X-h_\beta(X)]$ найдем θ_1 :

$$1 + \theta_1 = \frac{(1+\theta) - (1+\theta_{re})e^{-\beta}}{1 - e^{-\beta}} \iff \theta_1 = \frac{\theta - \theta_{re}e^{-\beta}}{1 - e^{-\beta}}.$$

При заданных значениях последнее равно 0.2184.

3. Выразить $E[I_d]$ для случая нормального с параметрами (a, σ^2) распределения S.

Решение.

$$E[I_d] = a - d - \int_{-\infty}^d (x - d)f(x)dx = a - d - \int_{-\infty}^d xf(x)dx + d\int_{-\infty}^d f(x)dx = a - d + d\Phi(d) - \int_{-\infty}^d xf(x)dx = a - d + d\Phi(d) - a\Phi((d - a)/\sigma) + \sigma\phi((d - a)/\sigma),$$

$$(\phi(x) = \frac{1}{\sqrt{2\pi}}exp(-0.5x^2)), \Phi(x) = \int_{-\infty}^x \phi(t)dt)$$

поскольку

$$\int_{-\infty}^{d} x f(x) dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} \frac{x - a}{\sigma} \cdot exp(-\frac{1}{2}(\frac{x - a}{\sigma})^{2}) dx + \frac{1}{\sqrt{2\pi}} \frac{a}{\sigma} \int_{-\infty}^{d} exp(-\frac{1}{2}(\frac{x - a}{\sigma})^{2}) dx =$$

$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{(d - a)/\sigma} \frac{x - a}{\sigma} \cdot exp(-\frac{1}{2}(\frac{x - a}{\sigma})^{2}) d(\frac{x - a}{\sigma}) +$$

$$+ \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{(d - a)/\sigma} exp(-\frac{1}{2}(\frac{x - a}{\sigma})^{2}) d(\frac{x - a}{\sigma}) =$$

$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{(d - a)/\sigma} u \cdot exp(-0.5u^{2}) du + \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{(d - a)/\sigma} exp(-0.5u^{2}) du =$$

$$= -\frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{-0.5((d - a)/\sigma)^{2}} exp(t) dt + a\Phi((d - a)/\sigma) = a\Phi((d - a)/\sigma) - \sigma\phi((d - a)/\sigma)$$

4. 100 застрахованных по краткосрочному страхованию жизни разделены на 4 группы, данные по группам приведены в нижеследующей таблице

q	b=2	b=3
0.01	10	20
0.02	30	40

Требуется вычислить E[S], Var[S] а также определить параметры обобщенного распределения Пуассона используя первый метод аппроксимации. Чему равна дисперсия для аппроксимации S?

Решение.

$$E[S] = 2(10 \cdot 0.01 + 30 \cdot 0.02) + 3(20 \cdot 0.01 + 40 \cdot 0.02) = 4.4.$$

$$Var[S] = 4(10 \cdot 0.01 \cdot 0.99 + 30 \cdot 0.02 \cdot 0.98) + 9(20 \cdot 0.01 \cdot 0.99 + 40 \cdot 0.02 \cdot 0.98) = 11.586.$$

Последнее равенство следует из независимости исков и равенства дисперсии суммы сумме дисперсий слагаемых. Следует отметить, что среднее квадрата суммы не равно сумме квадратов средних!

Далее, величина $\lambda = 0.01 \cdot (10+20) + 0.01 \cdot (30+40) = 1.7$, распределение p(x) задается как

$$p(2) = \frac{10 \cdot 0.01 + 30 \cdot 0.02}{1.7} = 0.411765, \quad p(3) = \frac{20 \cdot 0.01 + 40 \cdot 0.02}{1.7} = 0.588235,$$

таким образом аппроксимация Z имеет полученные здесь параметры $(\lambda, p(x))$. Теперь

$$E[Z] = 1.7 \cdot (2 \cdot 0.411765 + 3 \cdot 0.588235) = 4.4,$$

$$Var[Z] = 4 \cdot (10 \cdot 0.01 + 30 \cdot 0.02) + 9 \cdot (20 \cdot 0.01 + 40 \cdot 0.02) = 11.8.$$

5. Перестраховщик покрывает 0.8 от превышения иска S над франшизой d, при этом максимальная сумма, которую готов выплатить перестраховщик, равна m. Требуется выразить нетто-премию перестрахования.

Решение. Поскольку $0.8(x-d) \le m \iff x \le d+1.25m$, то искомая величина равна

$$0.8 \int_{d}^{d+1.25m} (x-d)f(x)dx + P(S > d+1.25m) = 0.8 \int_{d}^{\infty} (x-d)f(x)dx - 0.8 \int_{d+1.25m}^{\infty} (x-d)f(x)dx + P(S > d+1.25m) = 0.8E[I_d] - 0.8 \int_{d+1.25m}^{\infty} (x-d-1.25m)f(x)dx - m \int_{d+1.25m}^{\infty} f(x)dx + m \cdot P(S > d+1.25m) = 0.8E[I_d] - 0.8E[I_{d+1.25m}] - m(1 - F(d+1.25m)) + m \cdot P(S > d+1.25m) = 0.8E[I_d] - 0.8E[I_d] - 0.8E[I_{d+1.25m}].$$

6. Годовой иск W представляет собой случайную величину, нормально распределенную со средним a и дисперсией σ^2 . Относительная безопасная нагрузка страховщика равна 0.25. Перестраховщик требует относительную безопасную нагрузку, равную 0.4, перестрахование пропорциональное с коэффициентом k. Требуется выписать уравнение для коэффициента поправки R определить, при каком значении k величина R будет максимальной, если $a=10, \sigma^2=4$.

Решение. Поскольку $M_X(r) = exp(ar + 0.5\sigma^2r^2)$, то уравнение примет вид

$$1 + 10((1+\theta) - (1+\theta_{re})k)r = \exp(a(1-k)r + 0.5(1-k)^2\sigma^2r^2).$$

При указанных значениях параметров уравнение примет вид

$$1 + (12.5 - 14k)r - exp(10(1-k)r + 2(1-k)^{2}r^{2}) = 0.$$

Обозначив левую часть уравнения через f(k,r), решим систему уравнений $R_k'=0, f(k,r)=0$, где $R_k'=-f_k'/f_r'|_{r=R}$. Численное решение данной системы показывет, что при k=0.2911 величина $R_{max}=0.04537$.

Список литературы

- [1] N.L. Bowers, H.U. Gerber, J.C. Hickman, D.A. Jones, C.J. Nesbit. Actuarial Mathematics. The Sociaty of ActuariES, 1986.
- [2] Х. Гербер. Математика страхования жизни. М., "Мир", 1995.
- [3] Г.И. Фалин, А.И. Фалин. Введение в актуарную математику. М.,ФАЦ МГУ, 1994.
- [4] R.E. Beard, T. Pentikäinen, E. Pesonen. Risk Theory. The stochastic Basis of Insurance(2nd ed.)London:methuen, 1977.
- [5] А.П. Архипов и др. Основы страховой деятельности. М., Бек, 1999.
- [6] Д. Бланд. Страхование: Принципы и практика.(пер. с англ.) М., "Финиансы и статистика", 1998.